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Abstract 
 

Graft versus Host Disease (GvHD) remains one of the main complications after 

haematopoietic stem cell transplantation (HSCT). Due to their ability to 

suppress effector cells, CD4+CD25highFoxp3high regulatory T (Treg) cells have 

been proposed as a cellular therapy to prevent GvHD. However it has been 

shown that Treg cells can inhibit natural killer (NK) cell functions. NK cells are 

key effectors of the Graft versus Leukaemia (GvL) effect post-transplant; 

therefore, it is plausible that a Treg cell therapy may impact on NK cell function 

and differentiation from haematopoietic stem cells (HSC). This study sought to 

elucidate the effects of Treg cells on NK cell function and differentiation using 

umbilical cord blood (CB) as a cell source. Herein, it is confirmed that CB 

CD4+CD25highFoxp3high Treg cells are fully functional and upon TCR-stimulation 

express CTLA-4 and LAP, and secrete TGF-β and IL-10. Also, they express 

receptors associated with trafficking to lymphoid tissues and the bone marrow, 

which are potential NK cell/Treg cell interaction sites. Furthermore, it is shown 

that CB Treg cells can suppress CB NK cell functions after TCR-stimulation in 

steady state but not in the presence of exogenous cytokines. Lastly, in an in 

vitro model of NK cell differentiation, a 90% reduction in total NK cells was 

observed when TCR-stimulated Treg cells were added at the time when HSC 

commitment to the NK cell lineage occurs. Interestingly, the few NK cells that 

developed in these cultures showed normal phenotype, IFN-γ secretion and 

cytotoxicity. Notably, the addition of human recombinant TGF-β to HSC cultures 

caused a similar reduction in NK cell differentiation as shown when TCR-

stimulated Treg cells were added to HSC cultures. Moreover, the Treg cell-

mediated effect was contact-dependent and cytokine competition-independent. 

Collectively, these results demonstrate for the first time that TCR-stimulated CB 

Treg cells inhibit NK cell differentiation through TGF-β, providing information for 

optimisation of the time of delivery for an adoptive Treg cell therapy post-HSCT 

to prevent GvHD. 
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1 Introduction 

1.1 The immune system  

The immune system is a network of cells and molecules specialised in fighting 

infections and eliminating non-self and transformed cells. It is divided into two 

categories, the innate immune system and the adaptive immune system. The 

innate immune system is the first line of defence against pathogens upon 

recognition in a non-specific manner. The adaptive immune system, also called 

the “acquired” immune system, is a second line of defence that consists of cells 

specialised in mounting an antigen specific immune response against 

pathogens and generating a memory response (Inaba et al., 1984, Delves and 

Roitt, 2000a, Delves and Roitt, 2000b).  

1.1.1 The innate immune system 

The first barrier that a pathogen encounters after the skin is the epithelial 

surface. This surface is coated with enzymes and mucus that either inhibit 

attachment of pathogens or have antimicrobial properties (Muller et al., 2005, 

Johansson et al., 2011) (Figure 1.1). For example, intestinal epithelial cells 

produce defensins and cathelicidins, enzymes that protect mucosal surfaces 

from bacteria by disrupting their cell walls (Eckmann, 2005).  
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Moreover, the innate immune response includes molecular components such 

as the complement system, acute-phase proteins and cytokines, and cellular 

components such as phagocytic cells (neutrophils, macrophages and dendritic 

cells (DCs)), pro-inflammatory cells (basophils, mast cells and eosinophils) and 

cytotoxic cells such as natural killer (NK) cells (Delves and Roitt, 2000a) 

(Figure 1.1). 

 

Neutrophils, macrophages and DCs are phagocytic cells whose primary 

function is to identify, engulf and destroy microorganisms (Flannagan et al., 

2012). These cells recognise pathogen-associated molecular patterns (PAMPs) 

that are exclusively expressed by pathogens such as bacteria, fungi and 

parasites via a variety of pattern recognition receptors (PRR) like Toll-like 

receptors (TLRs) (Flannagan et al., 2012). One example of a PAMP is the 

bacterial endotoxin lipopolysaccharide (LPS) of gram-negative bacteria that is 

recognised by TLR4 on phagocytes (Poltorak et al., 1998).  

 

Macrophages are long-lived cells that reside within the parenchyma of tissues 

(Beutler, 2004). They are the first cells to be recruited to the site of infections 

that recognise and engulf foreign substances. They also secrete cytokines that 

recruit other innate and adaptive immune cells (Cavaillon, 1994). Macrophages 

and DCs are referred to as professional antigen presenting cells (APC). APCs 

are key in the initiation of the adaptive immune response due to their role in 

presenting antigens to T cells. Neutrophils are short-lived and are the most 

abundant cells in inflamed tissues (Summers et al., 2010). Basophils, mast 

cells, and eosinophils express a high affinity Fc receptor for IgE and produce 

inflammatory mediators such as histamine, prostaglandins and leukotrienes 

(Delves and Roitt, 2000a). Moreover, eosinophils can also acquire phagocytic 

functions upon activation (Delves and Roitt, 2000a). Finally, NK cells recognise 

tumour or infected-cells through the upregulation of self-proteins and/or the 

decreased expression of major histocompatibility complex (MHC) class I on 

target cells (Ljunggren and Karre, 1990, Abbas, 2010). NK cells kill target cells 

through the release of cytolytic granules that contain perforin and granzyme 

(Schmidt et al., 1985, Delves and Roitt, 2000a). Additionally, NK cells secrete 

cytokines such as interferon (IFN)-γ that activate and recruit other cells of the 
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innate and adaptive immune systems. Since NK cells are one of the main 

focuses of this study, they will be described in detail in the following sections.  

1.1.2 Adaptive immunity 

The adaptive immune system is subdivided into humoral immunity and cell-

mediated immunity (Figure 1.1). B cells are the main effectors of the humoral 

immune response, being key in the clearance of extracellular pathogens 

(Abbas, 2010). Following activation, B cells secrete antibodies that mediate 

pathogen clearance. T cells are responsible for cell-mediated responses 

recognising antigens presented by APCs (Inaba et al., 1984). Following antigen 

recognition, T cells undergo activation and can either recruit other cells of the 

innate and adaptive immune systems by releasing cytokines and/or exert 

cytotoxicity against pathogen-infected cells, thus targeting intracellular 

pathogens (Ledbetter et al., 1990, Abbas, 2010).  

1.1.2.1 B cells 

The main functions of B cells are to produce antibodies that bind to and 

inactivate viruses and microbial toxins or target them for destruction by other 

elements of the immune system. In addition, B cells can also act as APCs 

(Rock et al., 1984, Batista and Harwood, 2009). Following antigenic stimulation 

through the B cell receptor (MacLennan, 1994, Rajewsky, 1996), B cells 

undergo clonal expansion and differentiate into plasma cells or memory cells. 

Plasma cells secrete high-affinity antibodies following affinity maturation, while 

memory B cells confer long term protection against a possible second challenge 

with the same antigen (Delves and Roitt, 2000a) . Notably, it has also been 

reported that B cells can exhibit regulatory properties (Mauri and Ehrenstein, 

2008). 

1.1.2.2  T cells 

T cells recognise antigens through their highly specific T cell receptor (TCR). 

There are two types of TCRs, γδ receptor and αβ receptor, the latter being the 
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most commonly expressed while γδ-bearing T cells represent only a small 

population of T cells (1-5%) (Lanier et al., 1987, Abbas, 2010, Kreslavsky and 

von Boehmer, 2010). Unlike B cells, T cells do not recognise soluble antigens, 

instead they interact with specific peptides presented by APCs in association 

with MHC class I or class II molecules. T cells are categorised according to their 

expression of the cell surface proteins cluster of differentiation (CD)4 or CD8. 

CD4+ T cells recognise peptides bound to MHC class II molecules, while CD8+ 

T cells recognise peptides bound to MHC class I molecules (Abbas, 2010). After 

activation, naive CD4+ T cells can differentiate into different subsets. These 

subsets can be categorised into “helper cells” (such as T helper (Th)1, Th2, 

Th17, and T follicular helper (Tfh) cells) and regulatory T (Treg) cells. Th1 cells 

generally protect against intracellular pathogens whereas Th2 cells protect 

against extracellular pathogens (Abbas, 2010). Similarly, Th17 cells target 

extracellular bacterial and fungal infections (Peck and Mellins, 2010). In 

contrast, CD8+ T cells are cytotoxic T lymphocytes (CTL) that can directly lyse 

pathogen-infected or tumour cells (Abbas, 2010). After the expansion 

contraction phases, whereby the majority of T cells undergo apoptosis, a small 

proportion of both CD4+ and CD8+ T cells acquire memory phenotypes and are 

maintained for the purpose of a faster and stronger secondary immune 

response (Sallusto et al., 1999). The phenotype and functions of Treg cells will 

be further described in the following sections.  
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Figure 1.1: Components of the innate and adaptive immune systems. In the first hours after 
infection, innate immunity provides the first line of defence. Epithelial barriers provide physical 
and chemical barriers against pathogens whereas phagocytic cells, pro-inflammatory cells and 
cytotoxic cells eliminate pathogens. If an infection persists, adaptive immune responses 
mediated by B cells and T cells develop. B cells differentiate into plasma cells characterised by 
rapid antibody production or memory B cells which confer protection against a possible second 
challenge with the same antigen. T cells recognise antigens presented by APCs, undergo 
activation, recruit other cell types and exert cytotoxic functions against pathogen-infected cells.  

 

1.2 The major histocompatibility complex 

MHC antigens are highly polymorphic and encode several molecules that play a 

crucial role in the immune system. The primary role of MHC molecules is to 

present peptides to T cells allowing them to discriminate between self and non-

self antigens. There are three main types of MHC molecules: class I, class II 

and class III. In humans, MHC molecules are further subdivided into three 

polymorphic genes: human leukocyte antigen (HLA)-A, -B and -C genes for 

MHC class I; and HLA-DR, -DQ and -DP genes for MHC class II. MHC class III 

molecules include genes encoding complement factors and tumour necrosis 

factor (TNF) (Shaw and Madrigal, 2012). MHC molecules differ with respect to 

the type of antigens they uptake and to which cells they present these antigens. 



Chapter 1: Introduction 

! 24 

MHC class I molecules are expressed by most nucleated cells and platelets and 

their structure consists of an α chain associated with a β2 microglobulin chain. 

MHC class I molecules present peptides of 8-10 amino acids in length to CTLs. 

MHC class II molecules are expressed by a more restricted repertoire of cells, 

such as B cells, macrophages and DCs. MHC class II molecules present larger 

peptides of 12-24 amino acids in length to CD4+ T cells and are comprised of 

two transmembrane glycoproteins, the α and β chains (Abbas, 2010). 

1.3 Biology of natural killer cells 

NK cells were first described in 1975 as large granular lymphocytes that 

exhibited natural cytotoxicity against tumour cells without prior activation 

(Herberman et al., 1975, Kiessling et al., 1975). They were later defined as a 

separate lymphoid lineage that exhibit cytotoxicity and cytokine-producing 

functions, capable of lysing tumour cells and cells infected with pathogens such 

as bacteria, viruses and parasites (Trinchieri, 1989, Biron, 1997, Moretta et al., 

2002, Lanier, 2008). NK cells are characterised by the expression of the neural 

cell adhesion molecule CD56 and the absence of CD3 expression (Robertson 

and Ritz, 1990). Human NK cells represent 10-15% of peripheral blood (PB) 

lymphocytes and 15-30% of umbilical cord blood (CB) lymphocytes (Kotylo et 

al., 1990) but they are also found in the bone marrow (BM), thymus, liver, 

spleen, placenta and lymph nodes (LN) (Romagnani et al., 2007, Abbas, 2010).  

1.3.1 Natural killer cell subsets 

NK cells can be subdivided according to their level of CD56 expression and 

whether or not they express Fcγ receptor III (CD16). They are categorised as 

CD56brightCD16- (~10% of the NK cell population in PB and CB) and 

CD56dimCD16+ NK cells (~90% of NK cells in PB and CB) (Lanier et al., 1986, 

Cooper et al., 2001a, Luevano et al., 2012a). These subsets differ in functions 

whereby CD56bright NK cells are cytokine-producing cells and CD56dim NK cells 

exhibit more cytotoxic functions and express higher levels of CD16 (Robertson 

and Ritz, 1990, Cooper et al., 2001a).  
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1.3.1.1 CD56bright natural killer cells 

CD56bright NK cells are mostly found in the LN and decidua and represent only 

10% of NK cells in PB and in the spleen. CD56bright NK cells are mainly 

characterised by their capacity to produce and secrete high amounts of 

cytokines such as granulocyte-macrophage colony-stimulating factor (GM-

CSF), IFN-γ, interleukin (IL)-10, IL-13 and TNF-β (Cooper et al., 2001c), and 

have low cytolytic functions. However, upon activation with IL-2 or IL-12 they 

can exert similar cytotoxicity against target cells as CD56dim NK cells 

(Romagnani et al., 2007). CD56bright NK cells express the high/intermediate 

affinity IL-2 receptor, which allows proliferation in response to low levels of IL-2 

(Caligiuri et al., 1990, Caligiuri et al., 1993). 

1.3.1.2 CD56dim natural killer cells 

CD56dim NK cells represent 90% of all NK cells and are mostly present in PB. 

They are fully mature NK cells with high cytotoxic capacity and produce low 

levels of cytokines (Lanier et al., 1989, De Maria et al., 2011). Importantly, 

CD56dim NK cells express only intermediate levels of IL-2 receptor, of all 

affinities; hence their lower proliferative capacity in comparison to CD56bright NK 

cells (Baume et al., 1992). In addition, CD56dim NK cells express Killer cell 

immunoglobulin-like receptors (KIR), while CD56bright NK cells do not (Cooper et 

al., 2001a). 

 

Several authors have demonstrated that CD56dim NK cells are derived from 

CD56bright NK cells. Using an in vitro system of human NK cell differentiation 

Freud and colleagues observed the transition of CD56bright NK cells to CD56dim 

NK cells, the latter being the last stage of NK cell differentiation (Freud et al., 

2006). Notably, in transplanted patients, donor-derived CD56bright NK cells 

appear early after engraftment, whereas CD56dim NK cells appear later, and this 

event is concomitant with a relative decrease in the percentage of CD56bright NK 

cells (Jacobs et al., 1992, Shilling et al., 2003, Vitale et al., 2004). Another 

group has confirmed this by analysing telomere length in both subsets 

(Romagnani et al., 2007). They observed longer telomeres in CD56bright NK 
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cells than in CD56dim NK cells suggesting that CD56bright NK cells represent an 

upstream developmental stage of CD56dim NK cells.  

1.3.2 Natural killer cell development 

Our current understanding of human NK cell differentiation relies mostly on in 

vitro systems. Like many other blood lineages, NK cells derive from CD34+ 

haematopoietic stem cells (HSC) and undergo discrete stages of differentiation. 

Various tissues have been identified where NK cell differentiation is supported 

such as the BM (Haller and Wigzell, 1977), thymus (Vosshenrich et al., 2006), 

liver (Takeda et al., 2005), spleen (Vosshenrich et al., 2005) and secondary 

lymphoid tissues (SLT) (Freud et al., 2006). However, in adults, the general 

consensus is that the BM is the main site of NK cell differentiation, since BM 

damages lead to impaired NK cell development in mice (Seaman et al., 1978, 

Kumar et al., 1979), whereas dysfunction or absence of other tissues that 

support NK cell differentiation do not affect NK cell development. This is shown 

in athymic mice (Herberman et al., 1975) and in individuals with Di George 

syndrome (Sirianni et al., 1983) that have a dysfunctional thymus, whereby 

normal numbers of functional NK cells are present. This suggests that the BM is 

crucial for HSC to commit to the NK cell lineage but that later stages of 

differentiation can also take place in the aforementioned tissues. How the BM 

supports NK cell maturation is still under investigation, but it is known that 

contact between NK cell precursors and BM stromal cells is critical for the 

production of fully mature NK cells in humans (Miller et al., 1994). The 

development of in vitro systems has considerably advanced our understanding 

of human NK cell differentiation. HSC from BM (Miller et al., 1994), CB 

(Grzywacz et al., 2006, Spanholtz et al., 2010) and mobilised PB (Yoon et al., 

2010, Zamai et al., 2012) have been used as HSC sources for NK cell 

production in vitro. This has allowed the identification of NK cell intermediates 

and appropriate culture conditions necessary for NK cell ontogeny. 
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1.3.2.1 Common lymphoid progenitors 

During haematopoiesis, HSC can differentiate into common lymphoid 

progenitors (CLP) or common myeloid progenitors (CMP). According to the 

traditional model of haematopoiesis (Kondo et al., 1997), CLPs can give rise to 

B cells, T cells and NK cells but not to myeloid cells. CLPs have been 

characterised as Lin-CD34+CD38+CD10+ cells (Galy et al., 1995). Notably, 

studies using CB or BM HSC have suggested that the expression of CD7 and 

CD10 defines NK/T and B cell precursors from CLPs, respectively (Miller et al., 

1994, Haddad et al., 2004).  

1.3.2.2 Stages of natural killer cell differentiation 

In humans, the most accepted model that describes the developmental stages 

of NK cell differentiation states that CLPs can give rise to mature NK cells in 

SLT in vivo (Freud et al., 2006). In this model, five stages of differentiation have 

been identified according to CD34, CD117 and CD94 expression. CD34 is 

mostly expressed by HSC and mesenchymal stem cells (MSC) (Civin et al., 

1984). CD117, also known as c-kit or stem cell factor (SCF) receptor, is 

expressed by half of CD34+ cells (Escribano et al., 1998) and CD94 is a C-type 

lectin receptor, expressed when NK cells undergo maturation (Yu et al., 2010).  

 

In mice, NK/T precursors commit to the NK cell lineage through the expression 

of the IL-2/IL-15 receptor β subunit (CD122) (Ikawa et al., 1999). The 

expression of CD122 is fundamental for NK cell development as it confers IL-15 

responsiveness, a key cytokine for NK cell differentiation and maturation 

(Huntington et al., 2009). Hence, the expression of this receptor marks two 

important steps in NK cell differentiation in mice, whereby a CD34+CD122- 

progenitor (referred to as a pro-NK cell) gives rise to a CD34-CD122+ progenitor 

(referred to as a pre-NK cell) that can subsequently differentiate into a mature 

NK cell (Mrozek et al., 1996, Williams et al., 1997, Huntington et al., 2013).  

 

Within human SLT, the first stage of NK cell differentiation (stage 1) is defined 

by the positive expression of CD34 and CD45RA and the absence of CD117 
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and CD94. Stage 1 NK cells fit the description of NK/T precursors in mice since 

they lack CD122 mRNA and express both CLP markers CD7 and CD10 (Freud 

et al., 2006) (Figure 1.2). The second stage of NK cell differentiation within SLT 

is characterised by the capacity of the cells to respond to soluble IL-15 or IL-2, 

similarly to what is observed in mice. Stage 2 cells are referred to as pre-NK 

cells and are defined as CD34+CD45+CD117+CD94- cells. However, this 

population is still not considered as committed to the NK cell lineage since the 

expression of CD7 and CD10 persists and differentiation into the T cell lineage 

can still occur under specific conditions (Freud et al., 2006) (Figure 1.2). Unlike 

pro-NK cells (stage 1) and pre-NK cells (stage 2), stage 3 cells no longer 

express CD10 and are completely devoid of T cell or DC development potential 

in vitro, thus suggesting that these cells are fully committed to the NK cell 

lineage. Therefore, stage 3 cells are referred to as committed immature NK 

(iNK) cells and are defined as CD34-CD45+CD117+CD94- cells. Importantly, a 

proportion of stage 3 cells express the natural cytotoxicity receptor (NCR) 

NKp44, involved in NK cell function (Figure 1.2). The progression from stage 3 

to stage 4 is marked by the positive expression of CD94 and downregulation of 

CD117. Stage 4 is characterised by numerous phenotypic changes such as 

expression of the activating NK cell receptors natural killer group 2D (NKG2D) 

and NKp46, as well as expression of CD122 and perforin, and production of 

IFN-γ (Freud et al., 2006) (Figure 1.2). Due to the similarities in phenotype to 

CD56bright NK cells, stage 4 cells are referred to as CD56bright cells (Cooper et 

al., 2001a).  

 

Based on the finding that PB CD56bright NK cells are CD94+CD16+/- and PB 

CD56dim NK cells are CD94+/-CD16+, and that the latter population derives from 

the former (Cooper et al., 2001a), Freud and Caligiuri reported a fifth stage of 

NK cell differentiation according to CD94 and CD16 expression on CD56+ NK 

cells (Freud et al., 2006) (Figure 1.2). The authors determined three different 

intermediate stages of differentiation within the SLT defined as CD56+CD94-

CD16-, CD56+CD94+CD16- and CD56+CD94+CD16+, the latter being the most 

mature NK cell stage. Notably, the expression of KIR, important for NK cell 

“education”, occurs together with the expression of CD16 (Freud et al., 2006). 

These observations are consistent with other reports showing KIR expression 
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as a late event during NK cell differentiation in vivo and in vitro (Valiante et al., 

1997, Miller and McCullar, 2001, Sivori et al., 2003). Moreover, these stages 

have also been observed in a model of differentiation of CB HSC into NK cells 

in vitro (Grzywacz et al., 2006).  

 

 

Figure 1.2: NK cell differentiation. Model of NK cell differentiation proposed by Freud and 
Caligiuri based on the expression of CD34, CD117, CD94, CD56 and CD16. HSC develop into 
pro-NK cells (stage 1) and subsequently into pre-NK cells (stage 2) acquiring responsiveness to 
IL-15. From Stage 3-5, HSC acquire full NK cell phenotype and effector functions. The 
expression of CD16 marks the end of NK cell differentiation.  

1.3.2.3 Natural killer cell education or licensing 

The engagement of inhibitory receptors on NK cells with self-MHC class I 

molecules determines whether NK cells will be functional or become 

hyporesponsive. NK cell “education” has been explained by several models 

including the “licensing” model (Kim et al., 2005), the “arming/disarming” model 

(Fernandez et al., 2005, Joncker and Raulet, 2008), the “cis interaction” model 

(Doucey et al., 2004, Chalifour et al., 2009) and the “rheostat” model (Brodin et 

al., 2009, Joncker et al., 2009).  

 

The “licensing” model was initially demonstrated in mice by the preferential 

activation and effector function of NK cells expressing inhibitory receptors for 

self-MHC class I in MHC congenic mice thus suggesting a selective process of 

NK cell activation. According to this model, NK cells that do not express 

inhibitory receptors will be hyporesponsive (Kim et al., 2005) (Figure 1.3A). In 
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contrast, Fernandez and colleagues showed that a subset of NK cells in mice 

acquires tolerance without expressing self-inhibitory receptors, thus challenging 

the “licensing” model. The authors proposed the “arming/disarming” model, 

which suggest that NK cells are fully functional by default. In the absence of 

inhibitory receptors for self-MHC class I, NK cells become hyporesponsive 

(Fernandez et al., 2005, Joncker and Raulet, 2008) (Figure 1.3B).  

 

The “cis interaction” model suggests that the interaction between inhibitory 

receptors (Ly49 in mice) in “cis” with ligands on the membrane of the same cell 

within the immune synapse is sufficient for NK cells to become responsive 

(Doucey et al., 2004, Chalifour et al., 2009). The evidence for this model is that 

Ly49 receptors in mice can transmit inhibitory signals even in the absence of 

engagement but only if present within the immunological synapse (Figure 

1.3C).  

 

Finally, the “rheostat” model suggests that NK cell responsiveness can be tuned 

“up” or “down” in a qualitative manner rather than in a binary manner. When NK 

cells express several inhibitory receptors to self-MHC class I, they exhibit a 

higher-level of responsiveness, whereas NK cells that express no inhibitory 

receptors exhibit the lowest level of responsiveness (Brodin et al., 2009, 

Joncker et al., 2009). This model is applicable to either the licensing model or 

the education model because an NK cell could be either tuned up (licensing) or 

down (education) (Figure 1.3D). Based on these findings, Brodin and 

colleagues also proposed a reversible tuning called “the extended rheostat 

model” (Brodin et al., 2009). The model describes the continuous 

licensing/disarming of mature NK cells based on the input of the environment 

(including activating receptors) hence allowing NK cells to adapt depending on 

conditions such as inflammation, stress or even trafficking.  
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Figure 1.3: Models for NK cell education. In the “licensing” model NK cells are by default 
unresponsive (A), whereas in the “arming/disarming” model NK cells are activated and rendered 
tolerant following contact with self-MHC class I molecules (B). The “cis-interaction” model 
describes the ability of inhibitory receptors to bind to MHC molecules located on the same cell 
membrane (C). This binding has been suggested to prevent ligand-independent inhibitory 
signals that can activate NK cells. The “rheostat” model is based on the continuous activation of 
NK cells rather than an on-off process (D).  

1.3.3 Natural killer cell phenotype 

1.3.3.1 Natural killer cell recognition 

NK cells recognise tumours or pathogen-infected cells through the absence or 

low expression of MHC class I (“missing-self” theory), or the upregulation of 

self-proteins (“induced-self” theory”) on target cells. Ljunggren and Karre 

proposed the “missing-self” theory based on observations in syngeneic mice 
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showing that lymphoma cells deficient in MHC class I, but not lymphoma cells 

expressing MHC class I, were lysed by NK cells, thus allowing a better 

understanding of how NK cells detect and lyse target cells (Karre et al., 1986, 

Ljunggren and Karre, 1990, Karre, 2008). Experiments in humans and mice 

demonstrated the existence of MHC-specific inhibitory and activating receptors 

expressed by NK cells (Moretta et al., 1990a, Moretta et al., 1990b, Moretta et 

al., 1993, Colonna et al., 1999) which led to the description of the “induced-self” 

model. This model suggests that the activation of NK cells depends on the 

recognition of “stress” ligands expressed by tumour or pathogen-infected cells 

by activating receptors on NK cells (Figure 1.4). 

 

!
Figure 1.4: NK cell recognition of target cells. NK cells recognise healthy cells and become 
tolerant through the engagement of self-MHC class I (left). The “missing self” theory consists of 
the recognition of tumours or pathogen-infected cells that downregulate or don’t express MHC 
class I molecules (middle). The “stress-induced” theory is based on the expression of stress-
induced ligands on tumours or pathogen-infected cells. Both “missing-self” and “induced-self” 
signals trigger NK cell activation.  
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1.3.3.2  Natural killer cell receptors 

1.3.3.2.1 Inhibitory receptors 

The expression of inhibitory receptors on NK cells is crucial to discriminate 

between tumour or pathogen-infected cells and normal healthy cells. In 

humans, there are two main families of inhibitory receptors recognising MHC 

class I molecules, the KIR (Wagtmann et al., 1995) and the CD94/NKG2A 

families (Houchins et al., 1991, Petrie et al., 2008) (Table 1.1). Notably, most 

inhibitory receptors are expressed in a stochastic manner by NK cells (Lanier 

and Phillips, 1996).  

 

Inhibitory receptors have an intracellular immunoreceptor tyrosine-based 

inhibitory motif (ITIM) located within the cytoplasmic tail. ITIMs recruit 

phosphatases that counteract the signalling cascade initiated by activating 

receptors. Upon binding, phosphorylation of tyrosines located in the ITIM 

domain occurs. Subsequently, the protein tyrosine phosphatases SHP-1 and 

SHP-2, or the inositol phosphatase SHIP are recruited to the cytoplasm. SHP-1 

and SHP-2 remove phosphatases from Syk, PLCγ, VAV-1 and CD3ζ whereas 

SHIP degrades phosphatidylinositol-3,4,5-trisphosphate (PI-3,4,5-P3), 

preventing PKC activation and calcium signalling from the activating signalling 

cascade (Vely and Vivier, 1997, Long, 1999).   

1.3.3.2.2 Activating receptors 

NK cells express a variety of activating receptors that synergise to regulate NK 

cell functions (Bryceson et al., 2006). The NCR family and other receptors such 

as NKG2D, 2B4, DNAM-1 and CD16, are activating receptors involved in NK 

cell effector functions (Table 1.1). For instance, NKG2D is expressed by 

“stressed” cells and is crucial for tumour cell rejection (Jinushi et al., 2003), 2B4 

is important for the rejection of melanoma cells expressing CD48 (Vaidya et al., 

2005), DNAM-1 is involved in the lysis of tumour and infected cells (Gilfillan et 

al., 2008), and CD16 is responsible for antibody-dependent cell-mediated 

cytotoxicity (ADCC) (Lanier et al., 1988). Within the NCR family, NKp30 plays a 
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role in the lysis of immature DCs (Ferlazzo et al., 2002), NKp46 facilitates NK 

cell lysis of infected and tumour cells (Bottino et al., 2000), and NKp44 is 

implicated in NK cell lysis (Vitale et al., 1998).  

 

The structure of activating receptors is rather heterogeneous. Some activating 

receptors signal through immunoreceptor tyrosine-based activating motifs 

(ITAM) located in the cytoplasmic tail of these receptors, but others like NKG2D 

use alternative signalling pathways. Upon binding, the ITAM tyrosine residues 

become phosphorylated by cytoplasmic Src family kinases, which then bind 

other protein kinases such as Syk and Zap70. Syk and Zap70 phosphorylate 

transmembrane molecules such as linker for activation of T cells (LAT) or non-T 

cell activation linker (NTAL) leading to subsequent phosphorylation of several 

signalling complexes such as phosphatidylinositide-3 kinase (PI3K), 

phospholipase C (PLC-γ1 and PLC-γ2) and VAV-1, 2 and 3 (Jevremovic et al., 

1999). Together, the signals induce cytoskeleton reorganisation that is 

necessary for cell polarisation and subsequent release of cytolytic granules 

containing perforin and granzyme.  

 

Other activating receptors such as NKG2D and NCR function through 

alternative signalling mechanisms using DNAX-activating protein (DAP)-10 and 

DAP-12, which are signalling subunits associated with ITAMs (Billadeau et al., 

2003, Cella et al., 2004). Upon binding, DAP-10 binds to PI3K and growth factor 

receptor-bound protein 2 (Grb2) initiating a signalling cascade leading to 

activation. In contrast, DAP-12 and other motifs such as FcεRI and CD3ζ, cause 

direct phosphorylation of tyrosines within the ITAM motif. The signalling 

pathways, ligands and receptor families of both inhibitory and activating NK cell 

receptors are described in Table 1.1.  

!  
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Table 1.1: NK cell receptors in humans. (Moretta et al., 2001, Di Santo, 2006). ULBP: UL16-
binding protein, HA; haemagluttinin.  

Family Receptor family Ligands Motif Activating/ 
inhibitory 

KIR KIR2S, KIR3S HLA-B-C ITAM/DAP12 Activating 
KIR2DL, KIR3DL HLA-A, B, C ITIM/SHP1-2 Inhibitory 

CD94-
NKG2 

CD94-NKG2A HLA-E ITIM/SHP1-2 Inhibitory 
CD94-NKG2C, E HLA-E ITAM/DAP12 Activating 

NKG2D NKG2D MIC-A/-B, 
ULBP1/2/3/4/5/6 

YxM/ 
DAP10/PI3K 

Activating 

NCRs NKp30 BAT-3, HSPG, B7-
H6 

ITAM/FcγR, 
CD3ζ, DAP12 

Activating 

NKp44 Viral HA ITAM/FcγR, 
CD3ζ, DAP12 

Activating 

NKp46 Viral HA, HSPG ITAM/FcγR, 
CD3ζ, DAP12 

Activating 

NKp80 AICL ITAM/FcγR, 
CD3ζ, DAP12 

Activating 

Other 
receptors 

Leukocyte 
immunoglobulin-like 
receptor 

MHC class I, UL18 ITIM/SHP1-2 Inhibitory 

2B4 (CD244) CD48 SAP, Fyn Activating/ 
Inhibitory 

DNAM-1 (CD226) CD122, CD155 
(Polio virus 
receptor) 

? Activating 

CD16 (FcγRIII) FcγRIII ITAM/FcγR Activating 
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1.3.3.3 Natural killer cell functions 

Once a target has been recognised, NK cells initiate cytotoxicity through four 

main mechanisms (Smyth et al., 2002): (i) direct lysis of the infected cell or 

tumour cell through the release of cytolytic granules containing perforin and 

granzyme, (ii) via death receptors such as tumour necrosis factor-related 

apoptosis-inducing–ligand (TRAIL) and Fas ligand (FasL), (iii) via ADCC, or (iv) 

the activation of other cells through the secretion of IFN-γ or TNF-α (Figure 

1.5). 

!
Figure 1.5: NK cell-mediated killing. NK cells recognise malignant or pathogen-infected cells 
through activating and inhibitory receptors. Once activated, NK cells produce IFN-γ and TNF-α, 
or mediate cytotoxicity via ADCC, perforin and granzyme release, and expression of death 
receptors (FasL and TRAIL) that induce target cell apoptosis.  

1.3.3.3.1 Perforin and granzyme 

Perforin and granzyme-mediated apoptosis is the main cytotoxic pathway used 

by NK cells to lyse target cells (Shinkai et al., 1988, van den Broek et al., 1995). 

Perforin is a pore-forming member of the membrane-attack-complex-perforin 

(MACPF) family of proteins (Podack and Dennert, 1983), whereas granzymes 

are serine proteases that induce apoptosis in either a caspase dependent 
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(granzymes B, H, K and M) or caspase-independent manner (granzymes A, B, 

H, K and M) (Grossman et al., 2003). It has been suggested that all granzymes 

work together displaying a broad spectrum of activities, thus triggering many 

pathways at the same time and ensuring apoptosis of target cells. The focus on 

granzyme B in the majority of NK cell studies is most likely due to the fact that 

granzymes A and B are the best described granzymes (Krzewski and Coligan, 

2012).  

 

For many years, the molecular mechanism of cell death induced by perforin and 

granzyme remained unresolved; however, new microscopy techniques have 

allowed a more thorough understanding of the dynamics by which NK cells 

exert cytotoxicity. Upon NK cell activation, perforin monomers polymerise in a 

Ca2+-dependent manner to form a range of pores with internal diameters of 120-

170 Å on the target cell plasma membrane, thus allowing the entrance of ~50 Å 

diameter granzyme molecules (Law et al., 2010). Once delivered, target cells 

undergo membrane repair to reseal the perforin-mediated pores, ultimately 

limiting osmotic stress and cell lysis. This process was found to take ~80 s 

(Lopez et al., 2013). Notably, a single NK cell is capable of killing up to ten 

target cells (Choi and Mitchison, 2013).  

 

It is possible that other molecules present in the lysosomal membrane of NK 

cells are also involved in this complex mechanism. For instance, recent findings 

have demonstrated that the lysosomal-asociated membrane protein-1 (LAMP-1, 

also known as CD107a) is important for perforin trafficking to lytic granules and 

granule movement and that LAMP-1 silencing by RNA interference blocks 

granzyme delivery to target cells (Krzewski et al., 2013). Other studies have 

shown that the glycosylated part of LAMP-1 protects NK cells from enzymes 

contained within the granules, thus protecting the cellular membrane from self-

attack (Fukuda, 1991). LAMP-1 expression has been used as a marker of 

cytokine production and NK cell-mediated lysis of target cells (Alter et al., 2004). 

Notably, perforin-deficient mice have reduced capacity to kill syngeneic MHC 

class I-deficient haematopoietic and epithelial tumour cells (Kagi et al., 1994). In 

humans, perforin-deficiency leads to familial haemophagocytic 
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lymphohistiocytosis (FHL) (Stepp et al., 1999), which in some cases cause 

predisposition to hematologic cancers (Chia et al., 2009).  

1.3.3.3.2 Death receptors TRAIL and FasL 

Another mechanism by which NK cells can mediate cytotoxicity is via 

expression of the death receptors TRAIL and FasL that are members of the 

TNF family. Activated NK cells express FasL and TRAIL in close proximity to 

cytolytic granules. During granule exocytosis, TRAIL and FasL engage with 

their cognate ligands, TRAILR-I and -II and Fas (CD95) respectively (Locksley 

et al., 2001) and induce signalling via the caspase-8 pathway, which leads to 

apoptosis of target cells. 

1.3.3.3.3 Antibody-dependent cell-mediated cytotoxicity 

A subset of NK cells express the FcγRIII (CD16), which binds to IgG1 and IgG3 

antibody-coated cells. This interaction can overcome inhibitory signals, thus 

inducing a cytotoxic response (Chan et al., 2012). It has been observed that the 

co-engagement of CD16 with other activating receptors leads to enhanced NK 

cell functions (Bryceson et al., 2006). It is important to mention that CD16 is 

expressed in the final stages of NK cell maturation (CD56dimCD16- NK cells); 

hence only mature NK cells can mediate killing via ADCC.  

1.3.3.3.4 Cytokine secretion 

Upon activation, NK cells secrete pro-inflammatory cytokines such as IFN-γ and 

TNF-α (Biron et al., 1999). IFN-γ production plays a critical role in antiviral 

defence and can also induce activation of other immune cells such as 

macrophages, CD4+ T cells and CD8+ T cells. In addition, IFN-γ enhances 

antigen presentation by upregulation of MHC class I and class II molecules on 

DCs. IFN-γ production by NK cells has been observed during mouse 

cytomegalovirus (CMV) and influenza virus infection (Biron et al., 1999) and it 

has been shown that IFN-γ induces NK cell effector functions against tumour 

metastases and sarcoma in mice (Street et al., 2001). Similarly, TNF-α 
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production by NK cells increases upon infection, in particular during infection 

with extracellular bacteria such as S. aureus (Small et al., 2008). Like IFN-γ, 

TNF-α can also promote DC maturation, which in turn can activate NK cells via 

IL-12, providing a feedback loop of activation (Long, 2007).  

1.3.4 Regulation of NK cell activation 

1.3.4.1 Natural killer cell priming 

Despite the classical concept that NK cells do not require pre-activation, it has 

been found that resting NK cells require an inflammatory context to be fully 

functional. This was first coined by Bryceson and colleagues who demonstrated 

that the engagement of NCRs does not trigger lysis by resting NK cells unless 

they have been previously primed with IL-2 (Bryceson et al., 2006). Moreover, 

North and colleagues reported that NK cell-resistant tumour cell lines were able 

to prime resting NK cells to lyse RAJI cells (North et al., 2007), thus suggesting 

a two-step NK cell activation process consisting of “priming” and “triggering”. It 

was later found that this “priming” process was KIR independent but CD15-CD2 

dependent (Sabry et al., 2011). 

 

Several studies have also confirmed that resting NK cells exhibit low cytotoxicity 

and cytokine secretion and that these functions are enhanced upon contact with 

IL-15 trans-presented by DCs (Lucas et al., 2007, Ganal et al., 2012). Trans-

presentation of IL-15 by DCs also results in increased translation of perforin and 

granzyme B (Fehniger et al., 2007). Furthermore, in a MHC class I-deficient 

mouse (B2m-/-) model of CMV infection, all NK cells, regardless of which 

inhibitory receptors they express, are activated. This suggests that upon 

infection, NK cell “priming” may be sufficient to break NK cell tolerance in order 

to clear infections (Sun and Lanier, 2008).  

 

It is also plausible that suppressive cytokines such as transforming growth 

factor (TGF)-β and/or IL-10 may also play a role in NK cell regulation of 

activation, since NK cells express the corresponding cognate receptors (Di 

Santo, 2006). These molecules have been reported to suppress IL-12 and IFN-
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γ production, and to block proliferation and cytotoxicity of NK cells (Rook et al., 

1986, D'Andrea et al., 1993, Bellone et al., 1995). However, this effect was lost 

after IL-15 activation of NK cells (Yu et al., 2006).  

1.4 Biology of T cells 

1.4.1 CD4+ T cell differentiation 

T cell precursors originate from HSC in the BM and mature in the thymus. Two 

major processes occur during T cell differentiation: TCR gene rearrangement 

and thymic selection. When T cell precursors enter the thymus they interact with 

peptide-MHC complexes presented by distinct thymic APCs located in different 

thymic microenvironments. These include cortical thymic epithelial cells, 

medullary thymic epithelial cells (mTEC) and DCs. This process allows T cell 

precursors to shape their TCR for antigen recognition. They then undergo a 

selection process and express surface molecules such as CD4 or CD8. The 

TCR comprises of αβ chains or γδ chains, combined with four different CD3 

subunits (γ, δ, ε, ζ). The TCRα chain is encoded on chromosome 14, whereas 

the β chain is encoded on chromosome 7. The diversity of the TCR is based on 

somatic recombination, also known as V(D)J recombination (Chien et al., 1984, 

Goldrath and Bevan, 1999). Each chain is the result of the rearrangement of 

multiple copies of V, D and J segments and in the case of the β chain, D 

segments joined by a C region, during T cell maturation (Goldrath and Bevan, 

1999). The thymocyte selection process consists of the deletion of T cells with 

high affinity for MHC/self-peptide complexes (negative selection), while T cells 

that exhibit low affinity undergo complete maturation (positive selection).  

1.4.2 CD4+ T cell activation 

Naive CD4+ T cells recognise peptides associated with MHC class II molecules 

that are derived from extracellular proteins internalised and processed by 

APCs. The two chains of the MHC class II molecule assemble in the 

endoplasmic reticulum (ER) with a third chain, the invariant chain. A portion of 
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the invariant chain binds to the groove of the MHC class II molecule to prevent 

peptides and unfolded proteins present in the ER from binding. The invariant 

chain also guides the transport of the MHC class II molecule out of the ER, 

through the golgi complex and into the endocytic system where internalised 

material is trafficked to. Upon acidification of endocytic vesicles, proteases are 

activated and cleave the invariant chain to give rise to the class II associated 

invariant peptide (CLIP) that remains bound to the class II molecule. Engulfed 

proteins are similarly degraded as the vesicle is acidified but the peptides 

generated cannot bind to the class II molecule due to occupation of the peptide 

binding groove by CLIP. A specialised MHC class II molecule, HLA-DM, 

facilitates removal of CLIP and binding of pathogen-derived peptides. The MHC 

class II molecule is then transported to the cell surface where it can be 

recognised by the TCR of CD4+ T cells (Weenink and Gautam, 1997). Once 

engaged, the tyrosine kinase Lck binds to CD4 and phosphorylates the CD3 

complex, which triggers downstream signalling pathways (Thomas and Brugge, 

1997).  

 

However, complete T cell activation requires co-stimulation by CD28. CD28 

acts as a second signal of activation with equal importance to the signal 

provided by the TCR/CD3 signal (first signal) in the “two signal model of 

activation” (Ledbetter et al., 1990). Nonetheless, other authors suggest that 

CD28 acts merely as an enhancer of activation to ensure T cell activation 

(Diehn et al., 2002, Kane et al., 2002). Particularly at low TCR occupancy, 

CD28 provides a synergistic signal for naive T cells to effectively activate 

transcription factors (TF) such as nuclear factor-κB (Kane et al., 2002), nuclear 

factor of activated T cells (Diehn et al., 2002) and activator protein 1 (Rincon 

and Flavell, 1994), which are important for cell proliferation and differentiation. 

Under resting conditions, CD28 is constantly phosphorylated by Lck and 

dephosphorylated by CD45 leading to a net state of phosphorylation. When 

APCs and T cells are in contact, CD45 is partially excluded from the synapse to 

allow constant Lck-mediated phosphorylation of CD28 and subsequent 

triggering of activation (Evans et al., 2005, Davis and van der Merwe, 2006). 

Collectively, this downstream signalling provided by TCR and CD28 induces 

naive T cell proliferation and T cell differentiation into different T cell subsets. 
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Notably, activation of the TCR in the absence of CD28 co-stimulation leads to T 

cell anergy (Jenkins and Schwartz, 1987, Harding et al., 1992). 

1.4.3 CD4+ T cell subsets 

As previously mentioned, CD4+ T cells can differentiate into Th1, Th2, Th17, Tfh 

and Treg cells (Figure 1.6). 

 
Figure 1.6: CD4

+
 T cell subsets. Naive CD4+ T cells can differentiate into different subsets 

based on the polarising cytokines present in the periphery. The environment will trigger 
transcription of master regulators such as T-bet for Th1 cells, Gata-3 for Th2 cells, Rorc for 
Th17 cells, Bcl-6 for Tfh cells and Foxp3 for Treg cells. These series of events are required to 
establish a unique cell type with specific functions.  

 

Th1 differentiation is supported by the cytokines IL-12 and IFN-γ, secreted by 

APCs and NK cells respectively (Mosmann and Coffman, 1989). The master 

regulator of Th1 cells is the T-box transcription factor (T-bet), which in turn 

suppresses Th2 differentiation by blocking the Th2 master regulator Gata-3 

(Hwang et al., 2005). The main function of Th1 cells is to activate phagocytic 

cells and secrete IFN-γ to participate in the generation of CTLs (Abbas, 2010).  

 



Chapter 1: Introduction 

! 43 

IL-4 secretion and the TF Gata-3 are necessary for the differentiation of naive T 

cells into Th2 cells. Gata-3 suppresses Th1 differentiation by inhibiting 

expression of the signalling chain of the IL-12 receptor. The main function of 

Th2 cells is to secrete IL-4, IL-13 and IL-5 which in turn induce production of 

IgE, and eosinophils and mast cell-mediated immune reactions against helminth 

infections (Abbas et al., 1996).  

 

Differentiation of naive T cells into Th17 cells requires the transcription of the 

master regulator retinoic acid orphan receptor (Rorc) (Acosta-Rodriguez et al., 

2007) and the presence of IL-6, IL-21, IL-23, and TGF-β. The importance of 

TGF-β is somewhat controversial, as it seems to act as an indirect inducer of 

Th17 differentiation (Mangan et al., 2006, Cosmi et al., 2008, Cosmi et al., 

2010). Th17 cells secrete IL-17A and IL-17F, which stimulate epithelial cells, 

endothelial cells and macrophages, and induce the mobilisation, recruitment 

and activation of neutrophils (Acosta-Rodriguez et al., 2007, Weaver et al., 

2007). In addition, Th17 cells can also secrete IL-21, which in turn activates NK 

cells, CTLs and B cells. The main role of Th17 cells is to confer protection 

against extracellular bacteria and fungal infections. 

!

Tfh cells were initially described in the germinal centres of human tonsils as 

cells expressing the chemokine C-X-C receptor (CXCR)5 with the proficiency to 

help B cells to produce antibodies (Breitfeld et al., 2000, Schaerli et al., 2000). 

Tfh cells can secrete IL-4 and IFN-γ (Reinhardt et al., 2009) and Bcl-6 acts as a 

master regulator of Tfh differentiation (Yu et al., 2009).  

 

Treg cells can differentiate in the thymus, (thymus-derived Treg cells (tTreg) 

cells) or in the periphery (peripherally derived Treg cells (pTreg) cells). pTreg 

differentiation requires the presence of TGF-β and the expression of the TF 

forkhead box P3 (Foxp3) (Chen et al., 2003). Since Treg cells are one of the 

main focuses of this study, they will be described in detail in the following 

sections.  
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1.4.4 CD4+ T cell plasticity 

Although it was first thought that CD4+ T cell subsets are terminally 

differentiated, increasing evidence suggests that under certain conditions, they 

can re-shape their phenotype and function. To understand CD4+ T cell plasticity 

it is important to first explain the “lineage-specifying model”. The paradigm of 

CD4+ T cell differentiation stems from the assumption that the expression of a 

single TF (“master regulator”) determines the specific CD4+ T cell subset 

generated. However, recent studies have proposed that CD4+ T cell 

differentiation instead depends on the interplay between different TFs, referred 

to as the “lineage-specifying model” (Oestreich and Weinmann, 2012). Thus, 

this model proposes that Th cells require the co-expression of several TFs to 

facilitate the expression of the “master regulator” or even re-shape their 

phenotype and function based on!the conditions present in the periphery such 

as inflammation.  

 

Several studies have confirmed the aforementioned model. Hegazy and 

colleagues observed the co-expression of T-bet and Gata-3 in Th2 cells upon 

infection with lymphocytic choriomeningitis virus (LCMV) (Hegazy et al., 2010) 

and Rudra and colleagues determined Gata-3 as a facilitator of expression of 

Foxp3 in activated Treg cells in mice (Rudra et al., 2012). Furthermore, it was 

observed that the transcription of Gata-3 in Treg cells facilitates the control of 

Th2 responses in the LN, where more pronounced production of effector 

cytokines such as IL-4, IL-5 and IL-13 was observed (Rudra et al., 2012). It was 

also found that tTreg cells could lose Foxp3 expression in the absence of TGF-

β and start secreting IFN-γ in mice (Komatsu et al., 2009). Moreover, Yang and 

colleagues demonstrated that in the presence of IL-6 and TCR stimulation, a 

subset of pTreg cells could downregulate Foxp3 and exhibit increased IL-17 

production (Yang et al., 2008). Similarly, subsequent reports in humans 

demonstrated that only a small population of Treg cells that express CD161 are 

capable of switching to a Th17 phenotype (Afzali et al., 2013, Pesenacker et al., 

2013).  
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1.4.5 CD4+ T cell tolerance 

T cell tolerance is a mechanism that prevents cells from reacting against self-

antigens. This mechanism can be divided into central tolerance and peripheral 

tolerance. Central tolerance occurs in the thymus where T cells with a strong 

affinity for self-antigens undergo “clonal deletion”. The mTECs are unique 

thymic APCs that play a crucial role in central tolerance. They present a large 

number of tissue-specific self-antigens (Derbinski et al., 2001) and express the 

nuclear factor autoimmune regulator AIRE, which controls the ectopic 

expression of “tissue-restricted antigens” (Anderson et al., 2002, Gardner et al., 

2009). Notably, a small proportion of cells that have strong affinity for self-

antigens do not undergo “clonal deletion” but instead undergo “clonal diversion”, 

which results in the production of self-reactive clones with suppressive capacity, 

called tTreg cells (Bautista et al., 2009, Leung et al., 2009). Which factors 

regulate clonal diversion and clonal deletion are still under investigation, 

however, it has been demonstrated that the absence of IL-2 and TGF-β 

signalling pathways leads to a complete absence of tTreg cells, thus suggesting 

their importance for tTreg cell differentiation (Liu et al., 2008c). Additionally, TFs 

such as NFAT, NF-κB and AP-1 seem to be required for Treg cell differentiation 

in the thymus (Tai et al., 2005, Mantel et al., 2006). 

 

Peripheral tolerance consists in the suppression or elimination of self-reactive 

mature T cells in the periphery that have escaped central tolerance. Elimination 

of autoreactive T cells is achieved by T cell intrinsic mechanisms such as 

ignorance (Zinkernagel, 1996, Alferink et al., 1998) and anergy (Kurts et al., 

1998), or T cell extrinsic mechanisms involving DCs (Janeway, 1992, Kurts et 

al., 1996) or Treg cells (Sakaguchi et al., 1996).  

1.5 Biology of regulatory T cells 

Treg cells are involved in the maintenance of immunological self-tolerance and 

immune homeostasis (Miyara and Sakaguchi, 2011). They have been studied 

since the early 1970’s and were originally discovered as cells derived from the 
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thymus capable of suppressing effector cells (Gershon and Kondo, 1970). To 

date, several subsets of T cells with regulatory functions have been described. 

Four CD4+ regulatory T cell populations have been reported: the T regulatory 1 

cell population that can prevent colitis induced in SCID mice by pathogenic T 

cells (Groux et al., 1997), the Th3 regulatory T cell subset that results from oral 

administration of myelin in multiple sclerosis (MS) patients (Fukaura et al., 

1996), the Th2 regulatory subset that controls autoreactive T cells in non-obese 

diabetic mice (Cameron et al., 1997), and the CD4+CD25highFoxp3high Treg cells 

that upon depletion lead to severe autoimmune diseases and allergies in 

humans and mice (Wildin et al., 2001). Herein, the latter are referred to as “Treg 

cells”.  

 

Some authors have described a CD8+ T cell population that prevents graft 

rejection by the secretion of IL-10 in mice (Reibke et al., 2006) and a 

CD8+CD28- population that suppresses cytokine production by CD4+ T cells in 

vitro and renders CD28-deficient mice susceptible to experimental autoimmune 

encephalomyelitis (EAE) upon depletion (Najafian et al., 2003). Furthermore, 

regulatory populations that are not T cells have been described such as 

regulatory B cells (Mauri and Ehrenstein, 2008), CD4-CD8- double negative T 

cells (Zhang et al., 2000), natural killer T (NKT) cells (Monteiro et al., 2010) and 

γδ T cells (Hayday and Tigelaar, 2003).  

1.5.1 Regulatory T cells 

Based on the seminal work of Sakaguchi and colleagues, Treg cells were first 

described in mice as CD4+CD25+ cells (Baecher-Allan et al., 2001, Dieckmann 

et al., 2001, Jonuleit et al., 2001, Ng et al., 2001, Levings et al., 2002, Taams et 

al., 2002). Treg cells represent 5-10% of CD4+ T cells in humans and mice 

(Baecher-Allan et al., 2001, Wing et al., 2002). Later, the Foxp3 transcription 

factor was identified as the master regulator of Treg cells, since Foxp3-mutant 

scurfy mice and Foxp3-null mice are devoid of Treg cells, leading to lethal 

autoimmune syndrome that can be prevented by adoptive transfer of Treg cells 

(Fontenot et al., 2003, Hori et al., 2003, Khattri et al., 2003). Similarly in 
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humans, Foxp3 mutations were identified as the cause of human 

immunodysregulation polyendocrinopathy enteropathy X-linked syndrome 

(IPEX) (Wildin et al., 2001). Notably, Roncador and colleagues analysed the 

expression of Foxp3 in CD4+CD25+ Treg cells in humans and found a direct 

correlation between CD25 and Foxp3 expression (Roncador et al., 2005).  

1.5.1.1 Regulatory T cell subpopulations 

There are two main Treg cell populations, tTreg cells and pTreg cells, which 

exhibit similar phenotypes and are capable of suppressing effector cells 

(Curotto de Lafaille and Lafaille, 2009); yet differ in stability and epigenetic 

modifications. The terms tTreg for thymus-derived Treg cells, pTreg for 

peripherally derived Treg cells and iTreg for induced Treg cells expanded in 

vitro have been used in this thesis based on the new Treg cell nomenclatures 

agreed at the Third International Conference on Regulatory T cells and Th 

subsets and clinical applications in human diseases recently held in Shanghai, 

China (Abbas et al., 2013).  

 

tTreg cells differentiate in the thymus and are able to recognise self-peptides, 

thus their importance in preventing autoimmunity (Curotto de Lafaille and 

Lafaille, 2009). Although a proportion of tTreg cells expressing lower levels of 

Foxp3 are able to switch to an effector phenotype under certain conditions of 

inflammation, those cells with the highest intensity of expression of Foxp3 are 

stable after several divisions (Yang et al., 2008, Komatsu et al., 2009). 

Subsequent studies have shown that this stability is due to Foxp3 

demethylation, characteristic of tTreg cells (Polansky et al., 2010). Notably, 

recent data has demonstrated that the genes for cytotoxic T-lymphocyte 

antigen-4 (CTLA-4) and Eomes are also demethylated in tTreg cells (Ohkura et 

al., 2012).  

 

pTreg cells differentiate in the periphery from naive CD4+ T cells. The 

importance of pTreg cells has been observed during inflammation and in 

tolerogenic settings. For instance, oral administration of antigens can lead to 

the development of pTreg cells that display suppressive function in a mouse 
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model of asthma (Mucida et al., 2005, Curotto de Lafaille et al., 2008). Also, it 

has been reported that the commensal microbiota directs the development of 

pTreg cells to induce mucosal tolerance (Round and Mazmanian, 2010, 

Atarashi et al., 2011, Geuking et al., 2011). Notably, the presence of pTreg cells 

has been detected in conditions of chronic inflammation such as asthma, colitis 

(Curotto de Lafaille et al., 2008, Haribhai et al., 2011) and infections with 

intestinal parasites (Grainger et al., 2010). In the presence of TGF-β and IL-2 

(Chen et al., 2003), pTreg cells express Foxp3 and acquire a regulatory 

phenotype; however, pTreg cells are not as stable as tTreg cells. Upon 

restimulation in the absence of TGF-β pTreg cells lose Foxp3 expression and 

their suppressive capacity (Floess et al., 2007). This can be explained by 

methylation of the Foxp3 promoter (Polansky et al., 2010), which correlates with 

the lack of stability of these cells. 

1.5.1.2 Phenotype of regulatory T cells 

Currently, Treg cells are characterised as CD4+CD25highFoxp3high since it has 

been found that only ~1-2% of CD25+ cells with the highest CD25 (Baecher-

Allan et al., 2001) and Foxp3 (Gavin et al., 2006, Allan et al., 2007) expression 

display significant suppressive capacity. Furthermore, Liu and colleagues 

demonstrated that low expression of the IL-7 receptor α-chain (CD127) directly 

correlates with high Foxp3 expression (>90%), thus identifying resting Treg 

cells as CD4+CD25highCD127low without requiring intracellular staining for Foxp3 

(Liu et al., 2006). However, upon activation, these markers cannot be used to 

characterise Treg cells due to upregulation of CD25 and downregulation of 

CD127 on conventional CD4+ T cells (herein referred to as Tcon cells) that have 

no regulatory function (Mazzucchelli and Durum, 2007). Moreover, other 

molecules involved in activation, memory, trafficking and function of Treg cells 

have also been used to define the phenotype of Treg cells providing a more 

precise characterisation (Sakaguchi et al., 2010). These include CTLA-4 and 

the latency-associated peptide (LAP) for Treg cell function; L-selectin (CD62L), 

the chemokines C-C receptors (CCR) 4, 6, and 7, and lack of α4 integrin for 

trafficking; and CD45RA for naivety. 
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1.5.2 Regulatory T cell-mediated mechanisms of suppression  

Treg cells have been shown to affect or inhibit functions of immune cells such 

CD4+ and CD8+ T cells (Thornton and Shevach, 2000, Trzonkowski et al., 

2004), B cells (Lim et al., 2005), NK cells (Ghiringhelli et al., 2005), DCs 

(Fallarino et al., 2003), mast cells (Gri et al., 2008) and NKT cells (Hua et al., 

2011). Upon stimulation, Treg cells can suppress the proliferation of effector 

cells with different antigen specificities (Takahashi et al., 1998, Thornton and 

Shevach, 1998, Tarbell et al., 2004, Yu et al., 2005). Furthermore, Treg cells 

can suppress target cells directly or indirectly by bystander suppression via 

interaction with APCs.  

1.5.2.1 Direct mechanisms of suppression 

There are currently three mechanisms of suppression by which Treg cells can 

directly suppress the functions of target cells. These include the release of 

suppressive cytokines, lysis of target cells or IL-2 deprivation.  

 

Treg cells are able to inhibit cell proliferation by the release of suppressive 

cytokines such as IL-10, TGF-β and IL-35 or expression of galectin-1 (Figure 

1.7A). Notably, it has also been demonstrated that TGF-β can exert 

suppression when bound to the membrane of Treg cells, thus requiring cell 

contact for suppression (Nakamura et al., 2001, Ghiringhelli et al., 2005, Garin 

et al., 2007). Several authors have elucidated the mechanism by which TGF-β 

is released from or bound to the surface of Treg cells (Figure 1.8). TGF-β is 

synthesised by Treg cells as a pro-TGF-β precursor, which consists of two 55 

kD fragments. The C-terminal homodimer of the pro-TGF-β precursor 

corresponds to mature TGF-β whereas the N-terminal homodimer contains LAP 

(Figure 1.8A). Mature TGF-β and LAP are non-covalently bound to each other 

in a complex called latent TGF-β. In this complex, TGF-β is inactive since LAP 

prevents TGF-β from binding to its receptor (Figure 1.8B). Upon activation, 

LAP undergoes a conformational change or is degraded by proteases allowing 

TGF-β to bind to its receptor (Annes, 2003, ten Dijke and Arthur, 2007) (Figure 

1.8C). Importantly, it has been found that Treg cells use a transmembrane 
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protein called glycoprotein A repetitions predominant (GARP) to bind TGF-β on 

their cell surface (Figure 1.8D). GARP is exclusively expressed upon Treg cell 

activation and it is thought to function as a receptor for the latent TGF-β 

complex, thus providing a mechanistic explanation of how Treg cells can bear 

TGF-β on their surface (Stockis et al., 2009).  

 

Another mechanism by which Treg cells can exert suppressive function is by 

direct lysis of target cells. (Figure 1.7B). Upon in vitro TCR-stimulation, human 

Treg cells upregulate granzyme A and can lyse CD4+ and CD8+ T cells in a 

perforin-dependent, Fas-FasL independent manner (Grossman et al., 2004a, 

Grossman et al., 2004b). Notably, lysis of NK cells (Cao et al., 2007) and B cells 

(Zhao et al., 2006) by Treg cells has also been observed.  

 

Furthermore, Treg cells can suppress effector cells by competition for 

exogenous IL-2 (Figure 1.7C). The first evidence of this mechanism was 

reported by Pandiyan and colleagues who demonstrated that Treg cells are 

characterised by the inability to produce IL-2, but in turn exhibit high efficiency 

binding and degradation of IL-2 via upregulation of the high-affinity IL-2Rα, thus 

inducing effector “starvation” (Pandiyan et al., 2007). In fact, Treg cells rapidly 

upregulate IL-2 receptor and at a much faster rate than Tcon cells after priming. 

Once activated, Tcon cells can override Treg cell-mediated suppression through 

high production of IL-2. 
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Figure 1.7: Direct mechanisms of Treg cell-mediated suppression. (A) Treg cells suppress 
target cells through the release of suppressive cytokines such IL-10, IL-35 and IL-10, and/or 
galectin-1. Galectin-1 and TGF-β are also present as membrane-bound forms. (B) Treg cells 
secrete perforin and granzyme and induce apoptosis of target cells. (C) IL-2 competition 
between Treg cells and effector cells leads to cell cycle arrest and apoptosis of target cells.   

!

!

!
Figure 1.8: TGF-β processing by Treg cells. (A) The pro-TGF-β precursor consists of two 
fragments: LAP and TGF-β. (B) Mature TGF-β and LAP are non-covalently bound to each other 
in a complex called latent TGF-β. In this complex, TGF-β is inactive since LAP prevents TGF-β 
from binding to its receptor. (C) Upon Treg cell activation, the latent TGF-β complex undergoes 
a conformational change allowing TGF-β to bind to its receptors. (D) The membrane protein 
GARP binds TGF-β to the cell surface, which represents the membrane-bound form of TGF-β.  

!

!
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1.5.2.2 Indirect mechanisms of suppression 

Treg cells can also suppress effector cells indirectly via interaction with APCs, 

particularly DCs, whereby Treg cells use DCs as bystander suppressors of 

other effector cells. There are several molecules expressed on the surface of 

Treg cells that are involved in this mechanism.  

 

CTLA-4 is constitutively expressed in Treg cells and competes against the 

stimulatory receptor CD28 expressed in Tcon cells for CD80/CD86 ligands in 

APCs. Upon binding, CTLA-4 can capture CD80/CD86 and internalise them into 

CTLA-4 expressing cells whereby the ligands are degraded (Thornton et al., 

2004a, Qureshi et al., 2011) (Figure 1.9A). Lymphocyte activation gene-3 (Lag-

3), a CD4 homologue that binds to MHC class II molecules with high affinity, 

blocks DC maturation and decreases antigen presentation to Tcon cells (Huang 

et al., 2004) (Figure 1.9B). Neuropilin-1 (Nrp-1), a receptor for class III 

semaphorins, induces prolonged interactions of Treg cells with immature DCs, 

thus decreasing antigen presentation to Tcon cells (Sarris et al., 2008) (Figure 

1.9D).  

 

Other molecules such as CD39 (Borsellino et al., 2007), which induces the 

expression of the immuno-inhibitory molecule adenosine hydrolising ATP or 

ADP to AMP (Figure 1.9C), and fibrinogen-like protein 2 (FGL2), which 

downregulates DC functions (Shalev et al., 2008) have also been implicated in 

Treg cell-mediated suppression (Figure 1.9C).  
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Figure 1.9: Indirect mechanisms of Treg cell-mediated suppression. (A) CTLA-4 on Treg 
cells bind to CD80 or CD86 expressed on DCs decreasing co-stimulation. (B) Lag-3 expressed 
on TCR-stimulated Treg cells binds to immature DCs maintaining their state of immaturity and 
decreasing antigen presentation. (C) CD39, expressed by Treg cells, degrades ATP to ADP and 
FGL2 dowregulates DC functions. (D) Nrp-1 binds to immature DCs prolonging interaction to 
Treg cells and decreasing antigen presentation. 

!

1.6 Immunological synapse for T cells and NK cells 

The concept of the immunological synapse (IS) was first defined by the studies 

of Norcross and colleagues in 1984. They described synapsis like organ 

between T cells and APCs (Norcross, 1984). To date, it is known that IS 

formation involves a complex orchestered sequence of events with distinct 

cytoskeletal requirements, that comprises the supramolecular organisation of 

multiple proteins crucial for cell-cell interactions (i.e. APC:T synapse and NK 

cells:target synapse). Interestingly, recent studies have further demonstrated 

that the mechanisms underlying IS formation can vary between cell types 

(Davis et al., 1999, Batista et al., 2001, Davis and van der Merwe, 2001).  

 

More thorough understanding of the underlying processes of IS formation was 

gained by simulating T cell:APC IS interactions with a supported lipid bilayer 

containing agonist MHC peptides and intercellular cell adhesion molecule-1 

(ICAM-1). In Th cells, peptide-MHC interactions cluster in a directed manner 

towards the center of the IS whereby ICAM-1 interacts with its receptor β-2 

integrin lymphocyte function-associated antigen 1 (LFA-1). Then, TCR clusters 

surround LFA-1 clusters, which are located in the central supramolecular 
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activation cluster (c-SMAC). In the order of minutes, this organisation is 

reverted in such a way that TCR clusters into the c-SMAC drifting LFA-1 to the 

peripheral ring, called the peripheral supramolecular activation cluster (p-

SMAC) (Monks et al., 1998, Grakoui et al., 1999). In the case of CTLs, TCR 

clusters are sorrounded by LFA-1 in the first stages and then LFA-1 is 

segregated into two domains in the c-SMAC, one cointaining the TCR and the 

other containing the cytolytic granules that are released to the target cell within 

the IS (Potter et al., 2001, Stinchcombe et al., 2001).  

 

In NK cells, synapse formation was described later by the seminal paper of 

Davis and colleagues (Davis et al., 1999), which demonstrated that inhibitory 

KIR receptors induce clustering of HLA-C at the surface of target cells (Davis et 

al., 1999). In a cytolytic NK cells, SHP-1 initiallly clusters in small areas 

surrounded by a ring of LFA-1 which later clusters in the p-SMAC. Once the p-

SMAC is organised, cytolytic granules cluster in the c-SMAC and released 

within the IS (Vyas et al., 2002). Notably, the interaction of LFA-1 with ICAM-1 

on target cells is required for NK cell cytotoxicity (Helander and Timonen, 1998).  

1.7 Lymphocyte trafficking 

Lymphocyte trafficking requires the expression of adhesion molecules and 

chemokine receptors on lymphocytes which directs them to target sites based 

on a stimulus provided by the milieu (Sackstein, 2005). For example, the 

integrins ∀4#7, L-selectin and CCR7 are adhesion molecules and chemokine 

receptors involved in migration to lymphoid tissues. The chemokine receptors 

CXCR4 and CXCR7 mediate migration to the BM and the chemokine receptors 

CCR5, CCR6, CXCR1 and CXCR3 are associated with migration to 

inflammatory sites (Campbell et al., 2001, Zhang et al., 2009). The reported 

expression of chemokine receptors and adhesion molecules on Treg cells and 

NK cells in humans and mice is summarised in Table 1.2. 
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Table 1.2: Comparative table showing expression of chemokine receptors and adhesion 
molecules on PB NK cells and PB Treg cells. Receptors are clustered in groups associated 
with lymphoid tissues, BM and inflammatory sites. (1): (Grindebacke et al., 2009), (2): (Taub et 
al., 1995), (3): (Luevano et al., 2012a), (4): (Redjimi et al., 2012), (5): (Zou et al., 2004), (6): 
(Zhang et al., 2009), (7): (Eikawa et al., 2010) (8) (Ferlazzo et al., 2004), (9) (Campbell et al., 
2001). Analysis was performed on the CD56dim subpopulation unless specified otherwise. +: 
positive expression, -: negative expression, low: low expression.  

Site Receptor Ligand Migration  Treg cell  
 

NK cell  
 

L
ym

p
h

o
id

 t
is

su
e

s 

Integrin ∀4 
 

VCAM-1 Gut-associated 
lymphoid tissues 

- (PB)(1) 
+(CB)(1) 

+(PB)(2) 

Integrin #7 MadCAM-1 Gut-associated 
lymphoid tissues 

- (PB)(1) 
+(CB)(1) 

Low 
(PB/CB) (3) 

L-selectin  
(CD62L) 

GlyCAM-1, 
MadCAM-1, 
PSGL-1 

SLT +(PB)(1) 
+(CB)(1) 

+, low 
(PB/CB) (3) 

CCR7 CCL21 SLT +(PB)(1) 
+(CB)(1) 

+ (PB) 
only 
CD56bright 
NK cells (8) 

B
M

 

CXCR4 CXCL12-
SDF1 

BM recruitment +(PB)(5) + 
(CB/PB) (3) 

CXCR7 CXCL11, 12 BM recruitment 
Inflammatory sites 

N/D Low 
(CB/PB)(3) 

In
fla

m
m

a
to

ry
 s

ite
s 

CCR5 CCL3-4 Inflammatory sites 
tumour sites 

+(mice)(6) +(PB) 
only 
CD56bright 
NK cells(9) 

CCR6 MIP-3α Skin homing +(mice)(6) - (CB/PB) (3) 

CXCR1/ 
IL8-RA 

CXCL6 
CXCL8 

Inflammatory sites +(PB) (7) + 
(CB/PB) (3) 

CXCR3 CXCL9, 10, 
11 

Inflammatory sites 
Involved in integrin 
activation and 
cytoskeletal changes 
Tumour sites 

+(mice)(4) Low (PB) 
(CD56dim 

NK cells) 
+ (PB) 
(CD56bright 
NK cells)(9) 

1.8 Interaction between natural killer cells and regulatory 
T cells 

1.1.1 Regulation of natural killer cell functions by regulatory T cells  

The effect of Treg cells on NK cell effector functions such as cytotoxicity, 

cytokine production and proliferation has been reviewed by us and others 

(Ralainirina et al., 2006, Zimmer et al., 2008, Pedroza-Pacheco et al., 2013). 

The mechanisms and conditions under which Treg cells suppress NK cells are 

summarised in Table 1.3. Collectively, these reports agree that Treg cells can 
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exert suppressive functions (i) in the absence of cytokines, (ii) through 

expression of membrane bound TGF-β, and (ii) with a minimum ratio between 

Treg cells and NK cells of 1:5 (Figure 1.10A). Notably, Treg cell-mediated 

suppression of NK cells is reverted in the presence of cytokines such as IL-2, 

IL-4, IL-7 and supraphysiological doses of IL-12 (Figure 1.10B).  

 

!
Figure 1.10: Mechanism of suppression of NK cells by Treg cells. (A) Resting Treg cells 
suppress autologous and allogeneic NK cells through membrane bound TGF-β under resting 
conditions or when Treg cells are activated with anti-CD3/anti-CD28 and IL-2 or APCs in the 
absence of cytokines. (B) NK cells can overcome Treg cell-mediated suppression in the 
presence of exogenous cytokines such as IL-2, IL-4 and IL-7. 
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Table 1.3: Effects of Treg cells on NK cell functions in humans and mice. H: humans, M: mouse, Allo: allogeneic, Auto: autologous. Adapted by permission 
from Macmillan Publishers Ltd: [Cellular and Molecular Immunology] (Pedroza-Pacheco et al., 2013), copyright 2013. 

NK cell function Observations H/M NK:T Type of Treg cells   Mechanism of suppression 

Natural cytotoxicity 

Inhibited in resting NK cells (Ghiringhelli et al., 2005) H 1:1 Resting tTreg cells Allo Membrane-bound TGF-β 

Not inhibited in resting NK cells if IL-2Rγ-chain specific 
cytokines are present (Ghiringhelli et al., 2005) 

H 1:1 Resting tTreg cells Allo N/A 

Inhibited in resting NK cells the presence of APCs  
(Trzonkowski et al., 2004) 

H 1:1 
TCR-stimulated tTreg 
cells 

Auto Not IL-10 mediated 

Inhibited in resting NK cells (Smyth et al., 2006, Lundqvist et 
al., 2009) 

M 1:1 
TCR-stimulated tTreg 
cells 

Auto Membrane-bound TGF-β  

Inhibited in IL-12 activated NK cells (Zhou et al., 2010) M 1:1 TCR-stimulated iTreg cells Auto Membrane-bound TGF-β 

Inhibited in resting NK cells (Sun et al., 2010) M 1:1 
TCR-stimulated tTreg 
cells 

Allo  CD39 

Enhanced in resting and IL-2 activated NK cells in the 
presence of APCs (Bergmann et al., 2011) 

H 1:2 
Tumour-specific TCR-
stimulated iTreg cells 

Auto Cell-cell contact 

Cytokine 
production 

Inhibited if IL-12 present (Ghiringhelli et al., 2005) H 1:1 Resting tTreg cells Allo Membrane-bound TGF-β 

Not inhibited if IL-2/IL-15 present (Ghiringhelli et al., 2005) H 1:1 Resting tTreg cells Allo N/A 

Inhibited in NK cells in the presence of APCs (Trzonkowski et 
al., 2004) 

H 1:1 TCR-stimulated tTreg Auto  Not IL-10 mediated 

Inhibited in IL-12 activated NK cells (Zhou et al., 2010) M 1:1 TCR-stimulated iTreg Auto Membrane-bound TGF-β 

Inhibited if IL-2 present (Bergmann et al., 2011) H 1:2 
Tumour-specific  
TCR-stimulated iTreg 

Auto Cell-cell contact 

Activating 
receptors 

NKG2D downregulation in resting NK cells (resting Treg 
cells)(Ghiringhelli et al., 2005) 

H 1:1 
Resting tTreg cells/ 
TCR-stimulated tTreg 

Allo Membrane-bound TGF-β 

NKG2D downregulation in resting NK cells (TCR-stimulated 
Treg cells) (Ghiringhelli et al., 2005) 

M 1:1 
Resting tTreg cells/ 
TCR-stimulated tTreg 

Allo Membrane-bound TGF-β 

NKG2D and NKp44 downregulation in IL-2 activated NK cells 
(Bergmann et al., 2011)  

H 1:2 
Tumour-specific TCR-
stimulated iTreg cells 

Auto Cell-cell contact 

Proliferation 
Decreased NK cell proliferation enhanced by Tcon cells in 
presence of APCs (Romagnani et al., 2005) 

H 1:1 iTreg and tTreg cells Auto  N/D 
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1.8.1 Natural killer cells control regulatory T cell responses 

The involvement of NK cells in the control of adaptive immune responses has 

been observed in chronic viral infections (Welsh and Waggoner, 2013) and 

infections with Mycobacterium tuberculosis (Roy et al., 2008). After infection 

with LCMV, NK cells kill activated LCMV-specific CD4+ T cells, thus preventing 

the antiviral CD4+ T cell response (Waggoner et al., 2012) (Figure 1.11A).  

!
Figure 1.11: NK cells control the adaptive immune response. (A) NK cells kill activated 
LCMV-infected CD4

+
 T cells at high viral loads in order to prevent exaggerated CD4

+
 T cell 

responses. (B) NK cells inhibit iTreg cell proliferation by the engagement of NKG2D with its 
cognate ligand ULBP1. (C) NK cells block the proliferation of pTreg cells by secretion of IFN-γ, 
regardless of the presence of TGF-β, and skew towards Th1 polarisation.  

!

The impact of NK cells on Treg cells has also been studied. Roy and colleagues 

reported that the presence of NK cells reduced proliferation of pTreg cells but 

not of tTreg cells in the context of microbial infection (Roy et al., 2008). This 

effect was reported to be NKG2D mediated (Figure 1.11B). Similarly, Brillard 

and colleagues reported the efficacy of autologous IL-2 activated NK cells to 

block pTreg cell differentiation (2:1 NK:pTreg cell ratio) in humans and mice via 

high levels of IFN-γ, polarising T cells towards a Th1 response even in the 

presence of soluble TGF-β (Brillard et al., 2007) (Figure 1.11C). Furthermore, 
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Chin and colleagues suggested that NK cell depletion led to a significant 

expansion of tTreg cells favoured by an environment with low levels of IL-6 and 

high levels of TGF-β in an induced tumour model in mice (Chin et al., 2010). 

Collectively, these observations demonstrate the capacity of NK cells to control 

Treg cells under certain conditions.  

1.9 Interaction between natural killer cells and regulatory 
T cells in healthy and pathological conditions  

1.9.1 Pregnancy 

There is accumulating evidence that the interaction between NK cells and Treg 

cells is beneficial during pregnancy. This may be due to the requirement for an 

immunosuppressive environment for the successful implantation of the embryo 

and tolerance of the embryo by the mother. The uterine endometrium, also 

called the decidua, is crucial for the development of placental vasculature. 

Interestingly, 70% of all human decidual lymphocytes are NK cells, defined as 

uterine or decidual NK (uNK) cells (King et al., 1998). In comparison to PB NK 

cells, uNK cells are characterised as CD56brightCD16-CD3- cells that express 

KIR and exhibit low killing capacity despite the fact that they have cytolytic 

granules (Moffett-King, 2002). Notably, Treg cells are also abundant in the 

decidua, with a higher frequency of fully functional CD4+CD25bright Treg cells 

observed in pregnant women as compared to non-pregnant women (Sasaki et 

al., 2004). 

 

Sasaki and colleagues confirmed the importance of Treg cells in pregnancy by 

showing reduced frequency of Treg cells in women who have had a 

spontaneous abortion in comparison to healthy pregnant women (Sasaki et al., 

2004). Hsu and colleagues did not observe any difference in the frequency of 

CD4+Foxp3+ Treg cells between healthy pregnant women and women with 

preeclampsia (Hsu et al., 2012). However, they did observe an impaired 

systemic expansion of pTreg cells, causing a difference in Treg cell 

composition. 
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1.9.2 Cancer  

In cancer, NK cells play a crucial role in disease clearance whereas Treg cells 

are associated with tumour escape; however the interaction between these two 

cell types in cancer has not yet been investigated. As widely reviewed by 

Orentas and colleagues, a detectable increase in Treg cell number is observed 

in various types of cancer where the number of Treg cells inversely correlates 

with the frequency and function of NK cells (Orentas et al., 2006). In 

gastrointestinal stromal tumour-bearing (GIST) patients, Ghiringhelli and 

colleagues detected high Treg cell numbers accompanied with low numbers of 

NK cells, which exhibited impaired functions (Ghiringhelli et al., 2005). Similar 

results were observed in colon (Doubrovina et al., 2003) and prostate 

carcinoma patients (Wu, 2004) whereby downregulation of expression of the 

activating receptor NKG2D was detected in NK cells in the presence of high 

levels of TGF-β, possibly secreted by the tumour. Consistently, Betts and 

colleagues analysed Treg cells before and twelve months after tumour excision 

in a cohort of patients with colorectal cancer (Betts et al., 2012). The authors 

observed higher levels of Foxp3 in CD4+CD25high Treg cells in cancer patients 

compared to healthy controls and showed that after tumour excision Foxp3 

levels in Treg cells returned to normal. Moreover, Cai and colleagues showed 

functional impairment of circulating and intrahepatic NK cells in hepatocellular 

carcinoma (HCC) patients (Cai et al., 2008). Interestingly, significant reductions 

in NK cell numbers were observed in tumour regions compared to non-tumour 

regions in the liver. Moreover, PB NK cells from these patients exhibited 

reduced killing capacity against K562 target cells and reduced IFN-γ secretion 

in vitro, which was further correlated with a high incidence of CD4+CD25+ Treg 

cells. The addition of Treg cells isolated from HCC patients efficiently inhibited 

the anti-tumour capacity of autologous NK cells in vitro. In fact, further 

investigations showed that elevated Treg cell numbers are associated with 

elevated levels of TGF-β (Moo-Young et al., 2009), a mechanism of tumour 

escape.  
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1.9.2.1 Regulatory T cell depletion in cancer 

Because Treg cells suppress key effector cells of the anti-cancer immune 

response, many groups focused on depleting them before or after treatment. 

Table 1.4 summarises some of the relevant work that has been performed in 

mice and humans. These studies clearly suggest that the depletion of Treg cells 

can lead to increased NK cell function and proliferation, which can be further 

enhanced by IL-2 and possibly IL-15 therapy, although the latter has yet to be 

investigated. 

 

Table 1.4: Effects of Treg cell depletion in human and mouse cancer. Adapted from 
(Pedroza-Pacheco et al., 2013). H: humans, M: mice. 

1.9.3 T cell regulation of natural killer cells: a third mechanism of 
natural killer cell tolerance? 

In order to prevent spontaneous activation, Treg cells regulate NK cells directly 

or indirectly via Tcon cells and by cytokine deprivation (IL-2) under homeostatic 

conditions; hence limiting cytokine availability and thus controlling NK cell 

activation. This suppression can be reverted by upregulation of CD25 (IL-2 

receptor α chain) on NK cells. In particular, IL-12 and IL-18, secreted by 

macrophages or DCs during inflammation, can upregulate CD25 on NK cells 

NK cell 

function 

Effect H/M 

Natural  

Cytotoxicity 

Increased (2-fold) (ex-vivo) (Shimizu et al., 1999, Ghiringhelli et 

al., 2005) 
No effect with CD25 depletion alone, but effect for CD25 

depletion + IL-2 (long term-assays) (Hallett et al., 2008) 

Enhanced in metastatic lymph node (ex-vivo) (Ghiringhelli et 

al., 2005) 
Enhanced in tumour kidney carcinoma (ex-vivo) (Ghiringhelli et 

al., 2005) 

M 

 
M 

 

H 

 
H 

Proliferation Increased in spleen (ex-vivo) (Ghiringhelli et al., 2005) M 

Tumour  
clearance 

Decreased tumour size (Shimizu et al., 1999, Smyth et al., 
2006, Hyka-Nouspikel et al., 2007, Sun et al., 2010) 

Increased number of tumour-free mice (Simon et al., 2007) 

M 
 

M 

Graft rejection Increased BM rejection (Barao et al., 2006) M 

Survival Increased survival when IL-2 infused (Hallett et al., 2008) M 

Tumour 

regression 

Promote tumour regression with the addition of IL-2 (Kottke et 

al., 2008) 

M 

Disease 
remission 

Patient skewed towards Graft versus Leukaemia (GvL) instead 
of Graft versus Host Disease (GvHD) (Maury et al., 2010) 

H 
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(Lee et al., 2012) allowing NK cells to compete with Treg cells for IL-2. Other 

cytokines described to override Treg cell-mediated suppression are IL-4 and IL-

7 (Ghiringhelli et al., 2005); however it is currently unknown whether these 

cytokines can upregulate CD25 on NK cells. These findings highlight the 

importance of CD25 expression on NK cells as a mechanism to regulate NK cell 

activation. Two reports confirmed these hypotheses in vivo (Gasteiger et al., 

2013a, Gasteiger et al., 2013b, Sitrin et al., 2013).  

 

Sitrin and colleagues studied the interaction between NK cells and Treg cells 

and the importance of IL-2 for Treg cell-mediated NK cell suppression in a 

BDC2.5/NOD mouse model of type 1 diabetes (Sitrin et al., 2013). This model is 

ideal of addressing this question since it is characterised by limited IL-2 

production by CD4+ T cells in these mice and close proximity between Treg 

cells and NK cells in the pancreatic islets of Langerhans. Their results 

confirmed that IL-2 availability is an important mechanism of NK cell regulation 

mediated by Treg cells. In mice depleted of Treg cells, NK cells upregulate 

genes involved in NK cell proliferation, cytokine secretion, cytotoxicity and IL-

2/Stat5 signalling but downregulate expression of genes involved in TGF-β 

signalling. These findings suggest that TGF-β or IL-2 consumption is a 

mechanism of NK cell regulation by Treg cells. However treatment with IL-2 

agonists, but not TGF-β, recapitulates the observed effect confirming that IL-2 is 

the mechanism by which Treg cells regulate NK cells. 

 

In addition, Gasteiger and colleagues showed similar results using Foxp3DTR 

mice, in which Treg cells can be depleted using diphtheria toxin (Gasteiger et 

al., 2013b). NK cell cytotoxicity was increased upon depletion of Treg cells, and 

was decreased by neutralisation with IL-2 mAb. Furthermore, they also found 

that Treg cells can indirectly regulate NK cells by inhibition of activated CD4+ T 

cells, as it has been previously described that activated CD4+ T cells can 

enhance NK cell functions via IL-2 (Fehniger et al., 2003, Bergmann et al., 

2011). Collectively, these reports suggest that Treg cells can directly or 

indirectly regulate NK cells via IL-2 by controlling CD4+ T cells and that 

upregulation of CD25 on NK cells upon activation with IL-12 and/or IL-18 breaks 

this suppression. Notably, this mechanism of tolerance has been previously 
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observed for Treg cell-mediated suppression of CD4+ T cells (Pandiyan et al., 

2007, Josefowicz et al., 2012) (Figure 1.12). 

 

!
Figure 1.12: Treg cells regulate NK cells via IL-2. (A) CD4 T cells enhance NK cell function 
by the secretion of IL-2 and Treg cells deprive NK cells of IL-2 to regulate NK cell function. (B) 
Upon Treg cell depletion, this effect is reverted. 
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1.10 Haematopoietic stem cell transplantation 

1.10.1 Source of haematopoietic stem cells 

Haematopoietic stem cell transplantation (HSCT) has been used since the late 

1950’s to treat haematological malignancies such as leukaemia, anaemia, 

lymphoma and myeloma (Thomas et al., 1957, Copelan, 2006) and 

autoimmune diseases such as MS, systemic lupus erythematosus and 

rheumatoid arthritis (Passweg and Tyndall, 2007). HSC are multipotent cells 

capable of self-renewal and differentiation into myeloid, lymphoid and 

erythromegakaryocytic lineages (Copelan, 2006). HSC can be isolated from 

three different sources: BM, granulocyte colony-stimulating factor (G-CSF) 

mobilised PB or CB. The donor can be an HLA identical or haploidentical 

sibling, matched unrelated donor or mismatched donor (Copelan, 2006). Also, 

HSC can be obtained from the patient and infused after treatment; this is 

referred to as autologous HSCT. Notably, the choice of the HSC source 

depends on the type and stage of the disease to treat, age of the patient (adult 

or paediatric) and availability of HSC.  

1.10.1.1 Advantages and disadvantages of umbilical cord blood 
transplantation 

The first CB transplant was successfully performed on a five year-old patient 

with Fanconi’s anaemia in 1988 (Gluckman et al., 1989). The umbilical cord 

develops from the yolk sac and replaces it by the fifth week of foetal 

development becoming the source of nutrients for the foetus (Sadler, 2010). 

The main advantage of CB as compared to other HSC sources is the ease of 

procurement, the safety for mothers and donors, the reduced likelihood of 

transmitting infections such as CMV, and the ability to use cryopreserved 

samples. Currently, more than 30 000 transplants have been reported and more 

than half a million units have been stored worldwide (Welte et al., 2010, Ballen 

et al., 2013). Moreover, cord blood transplantation (CBT) is characterised by 

high overall survival, higher supply rate and higher likelihood of finding a donor 

compared to BM transplantation (BMT) (70% probability of finding a matched 



Chapter 1: Introduction 

! 65 

CB unit in the UK; 2009) (Laughlin et al., 2004, Rocha et al., 2004, Querol et al., 

2009). In addition, the requirement for HLA matching is less stringent for CBT 

than for BMT, ranging between 4-6/6 HLA match (Gluckman, 2012). Notably, 

CBT is characterised by reduced severity and occurrence of GvHD (Takahashi 

et al., 2004). However, delayed immune reconstitution (Niehues et al., 2001, 

Laughlin et al., 2004, Komanduri et al., 2007) and higher risk of infection are the 

main disadvantages of CBT (Sauter et al., 2011). Another drawback is the 

requirement of a minimum cell dose of 3 x 107 total nucleated cells (TNC)/kg for 

transplantation, which is why CBT is mostly used for paediatric patients (Ballen 

et al., 2013). Currently the use of two CB units to achieve the required cell dose 

has allowed CB to be used for transplantation in adult patients (Barker et al., 

2005, Brunstein et al., 2011a). Other approaches to augment cell doses include 

the use of expansion techniques in which HSC from CB are cultured with 

cytokines or stromal cells (Delaney et al., 2010), or the delivery of CB cells via 

intra-BM injection which has been associated with better engraftment and lower 

incidence of GvHD (Davies et al., 2008, Frassoni et al., 2010).  

1.10.2 Complications after haematopoietic stem cell transplantation 

Major progresses have been made since the first transplant was performed to 

minimise the likelihood of graft failure since the first transplant was performed. 

For example the introduction of reduced intensity conditioning (RIC) regimes 

prior to HSCT decreases tissue damages (Gomez-Almaguer et al., 2008, Schub 

et al., 2011, Gratwohl and Carreras, 2012). However, delayed immune 

reconstitution, risk of infection and GvHD are still complications for transplanted 

patients.  

1.10.2.1 Delayed immune reconstitution 

A main concern after transplantation is the profound and long-lasting 

immunodeficiency, which can lead to severe post-transplant infections, relapse 

and secondary malignancies (Mackall et al., 2009). There are several factors 

that determine the timing of immune reconstitution, such as the HSC source 

and the conditioning regimen used. For instance, the addition of T cell depleting 
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agents (ATG, Campath) to reduce GvHD has been associated with delayed 

immune reconstitution.  

 

A study by Davies and colleagues using a cohort of 24 BM-transplanted 

patients showed that normal levels of NK cells, B cells and T cells are reached 

within the first three months post-transplantation (Davies et al., 2008). Similarly, 

in patients with haploidentical HSCT, CD8+ T cells and NK cells also 

reconstitute within the first three months post-transplantation, but B cells and 

CD4+ T cells take up to six and eighteen months to recover respectively 

(Jacobson et al., 2012). Moreover, CBT recipients are reported to experience 

long-lasting post-transplant deficiency in adaptive immunity but early recovery 

of NK cells. Komanduri and colleagues analysed immune reconstitution in 32 

CBT patients under RIC conditioning regimens and observed late T cell 

recovery of up to one year but early reconstitution of both NK cells and B cells 

in the first months after transplantation (Komanduri et al., 2007) (Figure 1.13). 

Similar levels of immune reconstitution have been observed in a cohort of 42 

patients who received double CBT (Jacobson et al., 2012). Overall, the 

prolonged immune reconstitution observed, particularly in CBT, leads to higher 

susceptibility to infection.  

 

!
Figure 1.13: Immune reconstitution post-CBT. Cell count of T cells (CD3

+
CD4

+
 and 

CD3
+
CD8

+
), B cells (CD19

+
) and NK cells (CD16

+
 and/or CD56

+
) post-CBT. Patients underwent 

RIC conditioning. Horizontal lines depict normal values obtained from a healthy HSC transplant 
donor. Figure from (Komanduri et al., 2007).  
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1.10.2.2 Risk of infection 

Infections are one of the main causes of mortality post-HSCT. The degree of 

susceptibility to infection depends on various factors such as the type of 

transplantation, source of HSC, conditioning regimen used, degree of 

histocompatibility and type of GvHD prophylaxis used such as T cell depleting 

agents, which render patients susceptible to a number of opportunistic 

infections (Junghanss et al., 2002). During the first 30 days post-HSCT, patients 

undergo a phase of neutropenia. At this stage, gram-negative and gram-

positive bacteria, Candida spp. and Herpes Simplex Virus cause the principal 

infections observed. Once engraftment is established, there is a high incidence 

of CMV, Adenovirus and Epstein Barr Virus infection (from 30-100 days) and 

finally after 100 days, occurrence of Varicella Zoster Virus and Pneumocystitis 

jiroveci are most common (Ninin et al., 2001, Tomblyn et al., 2009). The 

importance of NK cells in the immune response to infections in the context of 

HSCT was first observed in transplanted patients with decreased NK cell 

function, since they exhibited exacerbated viral infections (Quinnan et al., 

1982). Notably, other authors have demonstrated that KIR2DS2 and KIR2DS4 

expression is associated with reduced CMV reactivation in haploidentical 

donors (Zaia et al., 2009, Gallez-Hawkins et al., 2011) and that a correlation 

exists between a higher number of KIR activating receptors present on NK cells 

and a lower susceptibility to CMV reactivation (Sobecks et al., 2011).  

1.10.2.3 Graft versus Host Disease 

GvHD is one of the main challenges after HSCT causing high incidence of 

mortality. It involves the allogeneic recognition of recipient tissues by donor T 

cells caused by HLA mismatches between the donor and the patient (Ferrara et 

al., 2009), or in the case of fully matched transplants, GvHD is caused by minor 

histocompatibility antigens (mHAgs) (Voogt et al., 1988). According to the 

National Institute of Health classification, GvHD can be subdivided into acute 

GvHD (aGvHD) that occurs within the first 100 days post-transplantation and 

chronic GvHD (cGvHD) that occurs after 100 days (Filipovich et al., 2005, 

Griffith et al., 2008).  
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1.10.2.3.1 Minor histocompatibility antigens 

Following HLA-matched HSCT, peptides that arise from polymorphic self-

proteins can direct donor T cell immune responses. These polymorphic 

peptides are designated as mHAgs and are expressed on the cell surface of 

HLA class I or class II molecules (Goulmy, 1996). mHAgs can be encoded by 

sex chromosomes, autosomes, or mitochondrial DNA. The first clinical results 

demonstrated the relevance of mHAgs in GvHD showing a direct correlation of 

the minor HA-1 antigen mismatch with severity of GvHD. (Goulmy et al., 1996). 

Furthermore, in a cohort of T cell depleted HLA-matched HSCT patients, 

mismatches for the ubiquitous Y chromosome-derived mhAgs resulted in higher 

incidence of GvHD as compared to autosomal-derived mHAgs (Hobo et al., 

2013). 

!

1.10.2.3.2 Pathways of allorecognition 

To date, three main pathways of allogeneic recognition have been described. 

The “direct pathway” describes the recognition of alloantigens presented by 

recipient APCs by donor T cells (Figure 1.14A). There are currently two 

theories to explain the molecular mechanisms behind this pathway. The “high 

determinant density” model (Smith et al., 1997) identifies alloantigens as the 

primary source of allorecognition. This model assumes that every MHC 

molecule serves as a ligand, hence providing high cell surface antigen density 

as compared to the density of the complex of a specific peptide with a MHC 

molecule. On the other hand, “the multiple binary complex” model considers the 

peptide as the main source of allorecognition. This model predicts that different 

bound peptides will be recognised by different alloreactive T cells, thus 

stimulating a large number of T cells (Matzinger and Bevan, 1977). The “indirect 

pathway” describes how donor T cells recognise recipient alloantigens 

presented by donor APCs (Figure 1.14B). Herrera and colleagues described a 

third model of allorecognition whereby donor APCs are able to uptake intact 

recipient MHC/peptide complexes from recipient APCs and present them to 

donor T cells. This is referred to as the “semi-direct pathway” or “cross-
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dressing” (Herrera et al., 2004) (Smyth et al., 2008) (Figure 1.14C). As a result 

of this transfer, a single donor APCs is able to present allopeptides via self-

MHC class II molecules to CD4+ T cells (indirect pathway) and simultaneously 

prime T cells by an acquired MHC molecule (direct pathway). The fundamental 

role of the semi-direct pathway relies on the capability to stimulate both CD4+ 

and CD8+ T cells and create a CD8+ alloreactive memory effector T cell 

population, thus linking together the direct and indirect pathways. In the context 

of HSCT, the indirect and semi-direct pathways are more vigorous since donors 

APCs generally present minor histocompatibility antigens to donor T cells 

(Kishimoto et al., 2004).  

 

!

!

Figure 1.14: CD4
+
 T cell allorecognition pathways. Donor CD4

+
 T cells recognise recipient 

antigens presented by recipient APCs (direct pathway) (A) or by donor APCs (indirect pathway) 
(B). Donor APCs are able to uptake intact recipient MHC/peptide complexes and present them 
to donor CD4

+
 T cells (C).  

1.10.2.3.3  Acute Graft versus Host Disease 

aGvHD occurs in ~40% of all allogeneic HSCT recipients and is characterised 

by damages to the skin, upper gastrointestinal tract and liver. It can be divided 

into three sequential phases (Ferrara et al., 2009) (Figure 1.15). Phase I 

(conditioning phase) consists of tissue damages caused by the conditioning 

regimen, which leads to activation of host APCs. Activated host APCs then 

activate donor T cells leading to clonal expansion (Phase II or afferent phase). 
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Phase III, also called the efferent phase, comprises of the activation of cellular 

and inflammatory effectors such as CTLs, NK cells, neutrophils and the 

secretion of pro-inflammatory cytokines such as TNF-α, IFN-γ, IL-1 and nitric 

oxide causing organ damages (Ferrara et al., 2009).  

 

 

Figure 1.15: Pathophysiology of aGvHD. (Phase I) Conditioning regimen causes tissue 
damages, which in turn causes release of danger signals that activate host APCs. (Phase II) 
Activated host APCs present alloantigens to donor T cells leading to clonal expansion. (Phase 
III) Activation of cellular and inflammatory effectors and cytokine storm cause end-stage organ 
damages.  

1.10.2.3.4 Chronic Graft versus Host Disease 

In contrast to aGvHD, the pathophysiology of cGvHD is less understood. 

cGvHD occurs in 50% of haploidentical HSCT and 70% of matched unrelated 

HSCT. It is characterised by damages to nails, eyes, mouth, lungs, kidneys, 

heart, gastrointestinal tract and BM. cGvHD severity is graded according to the 

NIH global scoring which considers the number of affected sites/organs and 

their severity (Apperley and Masszi, 2012). To date, various factors 
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characteristic of the development of cGvHD have been identified (Blazar et al., 

2012). Thymus failure, which can be caused by the conditioning regimen or 

aGvHD, leads to reduced negative selection of alloreactive CD4+ T cells. Also, 

macrophage activation and release of cytokines such as IL-2, IL-10 and TGF-β 

is caused by polarisation towards a Th2 response. Subsequently, production of 

the aforementioned cytokines induces the activation of tissue fibroblasts that in 

turn cause tissue fibrosis. Low numbers of Treg cells lead to loss of immune 

tolerance and uncontrolled autoreactive responses. Finally, the dysregulation of 

B cells induces the formation of autoreactive B cells (Blazar et al., 2012).  

1.10.2.3.5 Therapies for prevention or treatment of graft versus 
host disease 

The use of steroids and extra-corporeal photopheresis (irradiation of white 

blood cells through ultraviolet light) are the most commonly chosen lines of 

treatment to control GvHD (Ferrara et al., 2009). However, prolonged treatment 

with steroids leads to long-term mortality rates of 90% (Apperley and Masszi, 

2012). New approaches have been proposed as alternatives to steroids; yet all 

these therapies are still being assessed in clinical trials (Figure 1.16). For 

instance, the use of mammalian target of rapamycin (mTOR) and hystone 

deacetylase (HDAC) inhibitors such as sirolimus (Phase II and III) (Shin et al., 

2011) and vorinostat (Phase II) (Choi and Reddy, 2011) respectively, decrease 

Th1 cell numbers and/or inhibit APCs. In patients with steroid-refractory aGvHD, 

antibodies such as alemtuzumab (Phase I-IV) that deplete T cells can reduce 

the severity of the disease (Gomez-Almaguer et al., 2008, Schub et al., 2011). 

Furthermore, the use of cellular therapies has recently been proposed to 

modulate or prevent GvHD. Under current investigation is the use of Treg cells 

to promote tolerance (Phase I-II) (Brunstein et al., 2011b, Di Ianni et al., 2011), 

MSC infusion to modulate the functions of B cells, T cells and NK cells (Phase I-

III) (Kebriaei and Robinson, 2011b, Kebriaei and Robinson, 2011a), and 

infusion of donor T cells containing a caspase 9 suicide gene to delete 

alloreactive T cells (Phase I) (Di Stasi et al., 2011).  
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Figure 1.16: Alternative therapies to prevent or modulate GvHD. RIC regimens decrease 
tissue damages, HDAC and mTOR inhibitors block host APC activation and/or decrease Th1 
cell numbers, whereas adoptive cellular therapies such as Treg cells and MSC suppress cellular 
and inflammatory effectors. The use of these therapies alone or in combination may provide an 
alternative treatment to steroids for GvHD.  

!

1.10.3 Graft versus Leukaemia effect 

In 1979, Weiden and colleagues observed an anti-leukaemic effect of GvHD in 

human recipients of allogeneic BM grafts (Weiden et al., 1979). Subsequently, 

Apperley and colleagues observed that chronic myeloid leukaemia (CML) 

patients transplanted with T cell depleted grafts exhibited lower GvHD but 

higher relapse rate, thus suggesting that T cells are crucial for disease 

clearance (Apperley et al., 1988). Two years later, Mackinnon and colleagues 

confirmed these findings by studying the in vitro capacity of donor allogeneic 

LAK+ and CD3+ cells to kill recipient CML cells but not healthy cells. This 

occurred in a cell-contact dependent manner and confirmed that T cells and NK 

cells can exert effector functions against leukemic cells (Mackinnon et al., 

1990a, Mackinnon et al., 1990b), hence establishing the concept of GvL or graft 

versus tumour (GvT).  
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Furthermore, there is evidence that NK cells can mediate GvL effects in HSCT. 

In haploidentical transplants for acute myeloid leukaemia (AML), Ruggeri and 

colleagues demonstrated that donor versus recipient NK cell alloreactivity 

reduced the risk of relapse whilst improving engraftment and protecting against 

GvHD (Ruggeri et al., 2002). To date, many investigators have focused on the 

optimal conditions to tip the balance between GvHD and GvL. 

1.11 Regulatory T cell therapy  

In view of their ability to induce tolerance, Treg cells have been proposed as an 

adoptive therapy to prevent or modulate GvHD after HSCT or to treat 

autoimmune diseases. This idea was first based on the work of Sakaguchi and 

colleagues who observed that Treg cells from naive mice prevented skin graft 

rejection in nude mice infused with Tcon cells (Sakaguchi et al., 1995). In the 

context of HSCT, preclinical and clinical studies have demonstrated the safety 

of this therapy in transplanted patients but the potential impact of Treg cells on 

GvL and infections is still controversial (Trenado, 2003, Maury et al., 2010, 

Brunstein et al., 2013). Furthermore, the use of polyclonal or antigen-specific 

Treg cells is still debatable. For instance, Trenado and colleagues have 

demonstrated in transplanted mice that recipient specific Treg cells can control 

GvHD and promote immune reconstitution better than third party polyclonal 

Treg cells (Trenado, 2003). However, other authors favour the use of polyclonal 

Treg cells due to their higher capacity for expansion that would allow reaching 

Treg cell doses in adult patients (Hoffmann et al., 2004, Brunstein et al., 2010).  

 

In humans, Trzonkowski and colleagues determined for the first time that the 

infusion of expanded Treg cells could control cGvHD and allowed withdrawal of 

steroid treatment (Trzonkowski et al., 2009). Later, the safety of infusion of 

expanded CB Treg cells in adult patients that received double CBT was 

demonstrated (Brunstein et al., 2011b). Notably, Treg cell-treated patients 

exhibited reduced incidence of aGvHD (61% to 41%) in comparison to historical 

CBT patients. However, the efficacy of prevention of GvHD could not be 

demonstrated due to the co-administration of GvHD prophylaxis. It is also 
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important to mention that Treg cells could only be detected in the patients up to 

fourteen days after infusion, which may suggest reduced persistence possibly 

due to exhaustion following in vitro expansion prior to infusion. In another phase 

I clinical trial, Di Ianni and colleagues demonstrated for the first time that freshly 

isolated donor Treg cells are able to counteract the potential GvHD that is 

induced by the infusion of a high number of Tcon cells in haploidentical 

transplanted patients (Di Ianni et al., 2011). Finally, Edinger and Hoffmann 

demonstrated no adverse effects of the administration of Treg cells in a cohort 

of nine patients at high risk of relapse, thus demonstrating safety and feasibility 

of Treg cell infusion (Edinger and Hoffmann, 2011).  

 

There is substantial evidence that some autoimmune diseases are associated 

with Treg cell dysfunction such as type 1 diabetes (Kukreja et al., 2002), IPEX 

(Wildin et al., 2001), Sjongren’s syndrome (Liu et al., 2008b), systemic lupus 

erythematosus (Liu et al., 2004) and MS (Haas et al., 2005, Huan et al., 2005, 

Liu et al., 2008a). Therefore, the use of Treg cells as an adoptive cell therapy to 

treat autoimmune diseases has been tested in mice. In a mouse model of 

diabetes, the adoptive transfer of antigen specific-Treg cells can prevent the 

disease (Szanya et al., 2002, Tang et al., 2004, Tarbell et al., 2007). Moreover, 

prior infusion of antigen-specific Treg cells in a mouse model of MS (EAE) can 

confer protection against the disease (Olivares-Villagomez et al., 1998). To 

date, the adoptive transfer of Treg cells in humans for the control of 

autoimmune diseases has not yet been tested.  

1.12 Aims of the study 

GvHD is one of the main challenges of allogeneic HSCT. Given their ability to 

suppress effector cells, CD4+CD25highFoxp3high Treg cells have been proposed 

as an attractive cellular therapy to prevent GvHD. However, Treg cells are also 

capable of suppressing NK cells, key effectors of the GvL effect (Ruggeri et al., 

2002) and crucial for anti-viral responses (Quinnan et al., 1982). Currently, our 

understanding of the effect of Treg cells on NK cells in HSCT is poor compared 

to other settings such as pregnancy and cancer. Notably, preclinical data show 
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discrepancies as whether Treg cells can impair or induce GvL. Also, to my 

knowledge, no data is available on the impact of Treg cells on NK cell 

differentiation. 

 

This thesis focuses on the effects of Treg cells on NK cell differentiation and 

functions in the setting of CBT. CB was selected as a model since NK cell 

reconstitution occurs early on after transplantation and NK cells constitute most 

of the lymphocytes in the circulation after CBT (Komanduri et al., 2007). These 

NK cells are capable of killing leukaemia cells ex-vivo (Beziat et al., 2009) and it 

is likely that they mediate the GvL effect observed in the first months after CBT. 

Moreover, the safe use of CB Treg cells as an adoptive therapy in double CBT 

patients has recently been demonstrated in a Phase I clinical trial, however 

issues such as higher susceptibility to viral reactivation still requires further 

investigation (Brunstein et al., 2011b, Brunstein et al., 2013). Therefore, the use 

of CB Treg cells as an adoptive therapy to prevent GvHD in CBT should be 

carefully reviewed as it could severely compromise NK cell functions.  

 

The specific aims of this study are: 

1. To determine the homing properties of CB Treg cells as compared to PB 

Treg cells and propose potential sites where CB Treg cells may interact 

with CB NK cells (Chapter 3).  

2. To describe the phenotype and functions of CB Treg cells (Chapter 3). 

3. To investigate the particular conditions under which CB Treg cells may 

impair CB NK cell effector functions (Chapter 4).  

4. To determine whether CB NK cells can lyse CB Treg cells (Chapter 4). 

5. To investigate the effects of CB Treg cells on NK cell differentiation in 

vitro (Chapter 5) and if any, to elucidate by which mechanism(s) Treg 

cells mediate these effects (Chapter 6). 
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2 Materials and methods 

2.1 Human samples 

CB units were obtained from the Programa Concordia Banc de Sang i Teixits, 

Barcelona, Spain, and the Anthony Nolan Cord Blood Bank, Nottingham, UK, 

with prior consent and ethical committee approval. Samples were collected 

using routine banking procedures into a CB donation bag containing citrate-

phosphate-dextrose anticoagulant buffer. Adult PB samples were collected from 

healthy adults with prior written consent. To prevent coagulation, 2 IU/ml 

heparin sodium sulfate (Sigma, UK) was added to collection tubes. All samples 

were processed within 36 h of collection. 

2.2 Mononuclear cell isolation 

CB and PB samples were diluted 1:1 with RPMI 1640 (Lonza, Belgium) 

supplemented with 0.63% trisodium citrate (Sigma, USA) and 0.05 µM β-

mercaptoethanol (Transport media). Mononuclear cells were separated by 

density gradient centrifugation at 2 000 rpm for 30 min (without break) using 

Ficoll-Paque PLUS (GE Healthcare, Sweden) for CB samples and Lympholyte-

H (Cedarlane, USA) for PB samples. The mononuclear cell layer was collected 

and washed twice with RPMI 1640 (1 500 rpm for 10 min). When required, red 

blood cell lysis was performed using 3 ml of 1X BD PharmLyse Buffer (BD 

Biosciences, UK) for 4 min at 37 °C (water bath) followed by an extra washing 
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step. Cell counts were performed with two different dye exclusion methods: 

trypan blue (Sigma, UK) to determine cell viability and Turk’s to determine the 

number of nucleated cells. The later was used for magnetic cell isolation 

purposes.  

2.3 Isolation of primary cells using magnetic column 
separation 

Treg cells, NK cells and HSC were isolated using a magnetic column based-cell 

separation system. All incubation times and reagents were maintained at 4° C 

to avoid antibody capping.  

2.3.1 Regulatory T cell isolation 

Treg cells were purified from peripheral blood mononuclear cells (PBMC) and 

umbilical cord blood mononuclear cells (CBMC) using the CD4+CD25+ 

Regulatory T cell isolation kit (Miltenyi Biotec, Germany). PB Treg cells were 

isolated according to the manufacturer's protocol, whilst a published protocol 

optimised to isolate CB Treg cells was used for CBMCs (Figueroa-Tentori et al., 

2008). The purity of PB and CB Treg cells was assessed by flow cytometry by 

gating on CD4+CD25highCD127low cells (Seddiki et al., 2006a) (Figure 2.1). 

Purity ranged between 69 and 85% from total lymphocytes with a Treg cell 

recovery of 0.5 to 1.2%. 
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Figure 2.1: Gating strategy to determine CB and PB Treg cell purity. Flow cytometric 
analysis of isolated CB and PB Treg cells showing surface expression of CD4, CD25 and 
CD127 receptors. Plots are representative of 62 (CB Treg cells) and nine (PB Treg cells) 
independent experiments. 

2.3.2  Natural killer cell isolation 

CB NK cells were purified from CBMCs by negative selection using the NK cell 

isolation kit (Miltenyi Biotec, Germany) following the manufacturer’s 

recommendations. An additional granulocyte depletion step prior to isolation 

was required due to significant granulocyte contamination in CB samples that 

could not be removed after negative selection. The removal of granulocytes 

was performed by immunodensity depletion during the density gradient 

centrifugation using Ficoll. The quantity of 5 µl/ml RosetteSep Human 

Granulocyte Depletion cocktail (Stem Cell Technologies, France) was added to 

CB samples, incubated at 25 °C (room temperature) for 15 min on a platform 

shaker model str6 (Stuart Scientific, UK), and then diluted 1:1 with transport 

media. Ficoll layering was performed as described in Section 2.2. 

 

The purity of NK cells, identified as CD56+CD3- cells, ranged between 89 and 

97% from total lymphocytes with an NK cell recovery of 10-15% (Figure 2.2). 

From the total CD56+ cell population, 7-12% were CD56bright NK cells (Figure 

2.2D.1) and 88-93% were CD56dim NK cells (Figure 2.2D.2).  
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Figure 2.2: Gating strategy to determine CB NK cell isolation purity. Flow cytometric 
analysis of isolated CB NK cells showing surface expression of CD3, CD56, and CD16. Gated 
lymphocytes (A), gated lymphocytes unstained as negative control (B), expression of CD56

+
 

cells on isolated NK cells (C), CD56
bright

 subpopulation percentage (D.1), and CD56
dim

 
subpopulation percentage (D.2). Plots are representative of ten independent experiments. 

!

2.3.3 Haematopoietic stem cell isolation  

HSC were purified by positive selection from CBMCs using the CD34 

MicroBead Kit (Miltenyi Biotec, Germany). CBMCs were isolated using a 

modified published protocol (Jaatinen and Laine, 2007). In order to prevent non-

specific binding, 20% human AB serum (Lonza, Belgium) was added during the 

labelling step. Purity of isolated HSC was analysed following the International 

Society of Hematotherapy and Graft Engineering (ISHAGE)-single platform 

guidelines to enumerate CD34+ cells (Allan et al., 2002) (Figure 2.3). Purity 

ranged between 90% and 98% with a HSC recovery of 0.5-1% from total 

lymphocytes.  
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Figure 2.3: Sequential ISHAGE gating strategy to determine CB HSC isolation purity. CB 
HSC viability and purity were assessed by flow cytometry through the respective expression of 
CD45, 7-Aminoactinomycin D (7-AAD) and CD34 following single-platform ISHAGE guidelines. 
R1: Non-debris, R2: CD45

+
gating, R3: Live cells, R4: Live CD34

+
 cells, R5: Gating for 

CD45
low

SSC
low

 SC, R6: Gating to exclude granulocytes, R7: CD34
+
 cells. Purity was calculated 

as follows: (CD34/7-AAD)*100 [total cells]. Data is representative of nine independent 
experiments.  

2.4 Cell lines  

The embryonic liver cell line EL08.1D2 was kindly provided by Dr Robert 

Oostendorp (Technical University, Munich). This cell line is reported to support 

NK cell differentiation in vitro (Oostendorp et al., 2002, McCullar et al., 2008).  

The cell line K562 was established from a 53-year old female patient with CML. 

K562 carries the Philadelphia chromosome and does not express MHC class I. 

2.5 Freezing, storing and thawing of isolated cells 

For cryostorage, isolated cells and cell lines were resuspended in heat 

inactivated fetal bovine serum (FBS) (Lonza, Belgium) containing 10% dimethyl 

sulfoxide (Sigma, UK) (freezing media). FBS heat inactivation was performed in 

a water bath at 56 °C for 35 min and immediately placed at -20 °C to prevent 

protein degradation. Cells were stored in cryotube vials (Nunc, Denmark) at a 

concentration of 1x106 cells/ml (primary cells), 2x106 cells/ml (EL08.1D2) and 

10x106 cells/ml (K562) in 1 ml final volume. Cryovials containing the cell 
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suspension were then placed at -70 °C in freezing containers (Sigma, UK) that 

will allow a cooling rate gradient of 1 °C/min. After 24 h, cells were transferred 

to liquid nitrogen for long-term storage.  

 

For thawing, primary cells were thawed according to a published protocol 

optimised for high cell recovery of CB samples (manual washing) (Rodriguez et 

al., 2004). Cell lines were fast-thawed in a 37 °C water bath for 2 min, 

resuspended in 50 ml RPMI 1640 containing 10% heat inactivated FBS and 

washed. Cell counts with trypan blue were performed for all samples. 

2.6 Cell culture 

All cultures were incubated at 37 °C, 5% CO2 and 96% humidity, except for the 

EL08.1D2 feeder layer cells, which was incubated at 32 °C. 

2.6.1 Cell culture conditions for regulatory T cell analysis 

To study the phenotype and function of Treg cells, cells were cultured in RPMI 

1640 supplemented with 10% heat inactivated FBS, 0.05 mM β-

mercaptoethanol (Life Technologies, UK), and 1% penicillin/streptomycin 

(Lonza, Belgium), henceforth referred to as “complete media”. For proliferation 

and survival, 600 IU/ml (CB) or 100 IU/ml (PB) of IL-2 (Prospec, Israel) were 

added to the culture. A concentration of 50 000 Treg cells/well was plated in 96-

well round-bottom plates (Sarstedt, Germany) in 200 µl final volume. When 

expression of homing receptors was analysed, FBS was replaced by 1% Fatty 

acid-free bovine serum albumin (BSA) (Sigma, UK) to avoid non-specific 

migration.  

 

When required, Treg cells were activated by TCR-stimulation. Concentrations 

for maximal TCR stimulation levels with anti-CD3 and anti-CD28 were optimised 

in the laboratory by Dr Richard Duggleby. Treg cells were stimulated in two 

different ways depending on the level of stimulation required. Soluble anti-CD3 

provides a gradual T cell stimulation whereas plate bound anti-CD3 promotes a 
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strong T cell stimulation in a short period of time with less variability between 

samples (van Lier et al., 1989) (Figure 2.4).  

 

For soluble anti-CD3-mediated TCR stimulation 4 µg/ml (CB) or 10 µg/ml (PB) 

anti-CD3 (clone HIT3a, BD Biosciences, Belgium) and 8 µg/ml (CB) or 10 µg/ml 

(PB) anti-CD28 (clone CD28.2, BD Biosciences, Belgium) were added to the 

complete media. For plate bound-mediated TCR stimulation only CB Treg cells 

were used. Plates were pre-coated for 2-12 h with 10 µg/ml anti-CD3 in 1X 

phosphate buffered saline solution (PBS) (Lonza, Belgium) at 37 °C and then 

washed with PBS. Treg cells were resuspended in complete media 

supplemented with 10 µg/ml anti-CD28. Activation of Treg cells was measured 

by flow cytometry by analysis of surface expression of CD69, CTLA-4, 

glucocorticoid-induced tumour necrosis factor receptor (GITR) and LAP. 
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Figure 2.4: Comparative study of CB Treg cell activation using soluble and plate bound 
anti-CD3. Flow cytometric analysis of frequency (left) and mean fluorescence intensity (MFI) 
(right) of LAP (A.1-A.2), GITR (B.1-B.2), CTLA-4 (C.1-C.2) and CD69 (D.1-D.2) on CB Treg 
cells activated with soluble anti-CD3/CD28 and IL-2 (black squares) or plate bound anti-CD3, 
soluble anti-CD28 and IL-2 (red triangles), or IL-2 (blue circles). 600 IU/ml of IL-2 were added 
for CB Treg cells. Activation and function levels were analysed at 1, 24, 48 and 120 h, except 
for IL-2 (blue circles), which was analysed at 0 and 120 h. The lines represent medians. n=3-5. 
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2.6.2 Cell culture conditions for regulatory T cell-natural killer cell 
interactions  

To assess the effect of Treg cells on NK cells, different combinations of cell 

activation methods for both cell types were tested. Table 2.1 summarises the 

culture conditions under which these experiments were performed. Complete 

media was used for all combinations and cultures were performed in 96-well 

round-bottom plates. Media was changed by hemi-depletion every 48 h. In 

these experiments, IL-2 treatment does not cause significant activation but is 

essential for the survival and proliferation of CB cells. In all protocols, CB NK 

cells and CB Treg cells were used, except for Protocol A (Table 2.1), where NK 

cells and Treg cells from PB were used. Ratios of 1:1 (NK cells:Treg cells) and 

4:1 were used for these assays. NK cell concentration was always kept 

constant as 200 000 cells/well in 200 µl final volume.  

 

Table 2.1: Culture conditions for NK cell and Treg cell co-cultures.* NK cells without Treg 
cells were used as controls in all conditions. 

Protocol NK cell/ 

Treg cell 

NK cells (pre 

co-culture) 

Treg cells (pre 

co-culture) 

Co-culture conditions* 

A Resting/ 

Resting 

N/A N/A No cytokines for 4 h. 

B Resting/ 

Resting 

N/A N/A 1 000 IU/ml IL-2  

for 24 h. 

C Resting/ 

TCR-
stimulated 

N/A N/A 1 000 IU/ml IL-2, plate 

bound anti-CD3/soluble 
anti-CD28 for 24 or 48 

h. 

D Activated/ 

Resting 

20 ng/ml  

IL-15 
(Peprotech, 

USA) for 40 h 

1 000 IU/ml IL-2 Washed cells.  

No cytokines for 4 h. 

E Activated/ 
TCR-

stimulated 

20 ng/ml  
IL-15 for 40 h 

1 000 IU/ml IL-
2, plate bound 

anti-

CD3/soluble 

anti-CD28 

Washed cells.  
No cytokines for 4 h. 

2.6.3 Cell culture conditions for natural killer cell differentiation-
regulatory T cell interaction  

The embryonic liver cell line EL08.1D2 was cultured according to a published 

protocol (Grzywacz et al., 2006) in gelatinised flasks (Sarstedt, Germany) of 25, 

75 or 150 cm2 at 32 °C, 5% CO2 and 96% humidity. The amount of 0.1% Bovine 
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gelatine (Sigma, UK) in PBS was used to coat the flasks for 15-30 min at 37 °C 

and then washed with PBS. Cells were then resuspended at a concentration of 

4 000 cells/cm2 in basic medium: 40.5% α–minimum essential medium (α-

MEM)(Lonza, Belgium), 50% myelocult (Stem cell Technologies, France), 7.5% 

FBS, 50 µM β-mercaptoethanol, 2 000 µM GlutaMAX (Life Technologies, UK), 

1% penicillin/streptomycin and 1 µM hydrocortisone (Sigma, UK) containing 

20% of conditioned media (0.2 µm filtered supernatant from previous cultures).  

 

Once the cells reached 95% confluence, the supernatant was removed. Cells 

were washed with PBS and then trypsin (Life Technologies, UK) was added for 

4 min at 37 °C to detach the cells. Once the cells were detached, they were 

washed with complete media, centrifuged at 1 200 rpm for 5 min and counted 

with Trypan blue. Cells were irradiated with 30 Gy (3 000 rad) for 7 min, 

resuspended in basic media at a concentration of 20 000 cells/well in gelatin-

coated (50 µl) 96-well flat-bottom plates (Sarstedt, Germany) and left overnight 

to allow cell adhesion. The following day, basic media was removed by flicking.  

 

Based on the published protocol by Grzywacz and colleagues and further 

optimisation protocol by Luevano and colleagues (Grzywacz et al., 2006) 

(Luevano et al., Plos One, under revision), a concentration of 500 frozen-

thawed CD34+ HSC per well (final volume of 200 µl) were added to the 

monolayer of EL08.1D2 in NK cell media, which consists of Ham F12 (Lonza, 

Belgium) plus Dulbecco modified Eagle medium (Lonza, Belgium) (1:2 ratio) 

with 20% heat-inactivated AB serum, 50 µM ethanolamine (Sigma, UK), 20 mg/l 

ascorbic acid (Sigma, UK), 5 µg/l sodium selenite (Sigma, UK) and 1% 

penicillin/streptomycin. AB serum was heat inactivated the same way as FBS, 

as described in Section 2.5. This media was kept at 4 °C for up to one month. 

On weeks 1-3, 10 ng/ml IL-15, 5 ng/ml IL-3 (only weeks 1 and 2), 20 ng/ml IL-7, 

20 ng/ml c-kit ligand (SCF) and 10 ng/ml Flt3 ligand were added. For weeks 4-5 

(starting day 21), only IL-15 was added at a concentration of 50 ng/ml. All 

cytokines were purchased from Prospec, Israel, except for IL-3 (R&D, UK). The 

culture was maintained for 35 days and underwent weekly hemi-depletion of 

fresh media with the cytokines’ schedule described above.  
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In order to assess the effect of CB Treg cells on NK cell differentiation, different 

cultures were designed as shown in Table 2.2. Treg cells were added at key 

time points of HSC cultures when transition from one stage of differentiation to 

another occurs. Resting Treg cells were isolated and immediately added to the 

cultures while TCR-stimulated Treg cells were pre-cultured for 24 h with plate 

bound anti-CD3 and soluble anti-CD28, as mentioned in Section 2.6.1. After 

stimulation, the cells were washed and then added to the cultures. The ratio of 

NK cells:Treg cells was 4:1 in all co-cultures except when Treg cells were 

added at day 2 when a ratio of 1:1 was used. Different CB samples were used 

for each culture. Treg cell activation was assessed by flow cytometry by 

analysing the expression of GITR and LAP. 

 

Table 2.2: Condition used for NK cell differentiation cultures.  

Culture Day of Treg cell addition  
(resting or TCR-stimulated) 

Ratio  
HSC: Treg cell 

1 (HSC) No Treg cells were added N/A 

2 (HSC+Treg(D2)) Day 2 1:1 

3 (HSC+Treg(D9)) Day 9 4:1 

4 (HSC+Treg(D16)) Day 16 4:1 

5 (HSC+Treg(D23)) Day 23 4:1 

6 (HSC+Treg(D30)) Day 30 4:1 

2.7 Flow cytometry 

Characterisation and function of Treg cells, NK cells and HSC was performed 

by flow cytometry using a FACSCalibur (BD, UK). Data analysis was performed 

with FlowJo software (Treestar Inc., USA). 

2.7.1 Cell surface staining 

Cells were stained for cell surface markers using directly conjugated antibodies 

at pre-titrated concentrations (Table 2.3). Stainings were performed using 25 

000-100 000 cells resuspended in 50 µl PBS with 5% FBS (FACS buffer) in 96-

well V-bottom plates (Nunc, Denmark) for 15 min at 4 °C (except for CXCR4 

and CXCR7, which were incubated for 45 min following the manufacturer’s 

recommendations). Cells were then washed with FACS buffer and analysed by 

flow cytometry.  
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Table 2.3: Antibodies used for the assessment of Treg cells, NK cells, HSC and HSC-differentiated NK cell phenotype. 

Antibody Clone Company Description  Dilution Fluorochrome Use 

7-AAD  BD Pharmingen 7-Aminoactinomycin D  1/100  Apoptosis 

Annexin V  BD Pharmingen Phospholipid binding protein 1/50 FITC Early apoptosis 

CCR5 45531 R&D Systems Chemokine receptor 1/10 PE Migration 

CCR6 53103 R&D Systems Chemokine receptor 1/10 PE Migration 

CCR7 150503 R&D Systems Chemokine receptor 1/10 PE Migration 

CD3 SK7 BD Pharmingen TCR receptor complex 1/20 PerCP T cell phenotype 

CD4 MEM-241 Immunotools Co-receptor MHC class II 1/100 FITC T cell phenotype 

CD4 SK3 BD Pharmingen Co-receptor MHC class II 1/50 PE T cell phenotype 

CD4 SK3 BD Pharmingen Co-receptor MHC class II 1/25 PerCP T cell phenotype 

CD5 L17F12 BD Pharmingen Type 1, transmembrane protein 1/50 APC Lymphoid lineage 

CD7 Ebio124-

1d1 

BD Pharmingen Type I transmembrane protein 1/20 PE Lymphoid lineage 

CD8 SK1 BD Pharmingen TCR co-receptor 1/50 FITC CD8 T cell 
phenotype 

CD10 CB-CALLA eBioscience Membrane metallo-endopeptidase 1/5 PE Myeloid lineage 

CD11a (LFA-1) HI111 BD Pharmingen Cell adhesion molecule 1/100 FITC Cell interactions 

CD16 3G8 BD Pharmingen FcγRIII 1/5 FITC NK cell phenotype/ 
function 

CD16 3G8 BD Pharmingen FcγRIII 1/600 PE-Cy5 NK cell phenotype/ 

function 

CD19 467 BD Pharmingen B-lymphocyte antigen receptor 1/50 PE B cell phenotype 

CD25 2A3 BD Pharmingen IL-2α chain receptor 1/17 PE Treg cell phenotype 

CD25 2A3 BD Pharmingen IL-2α chain receptor 1/20 APC Treg cell phenotype 

CD33 HIM3-4 BD Pharmingen Trans-membrane receptor 1/5 FITC Myeloid lineage 

CD34 581 BD Pharmingen Cell surface glycoprotein 1/15 FITC SC phenotype 

CD34 581 BD Pharmingen Cell surface glycoprotein 1/10 APC SC phenotype 

CD45 HI30 BD Pharmingen Leukocyte common antigen protein 1/10 FITC Leukocytes 

CD45 HI30 BD Pharmingen Leukocyte common antigen protein 1/10 APC Leukocytes 

CD45RA HI100 eBioscience CD45 isoform 1/100 FITC Naive cells 
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Antibody Clone Company Description  Dilution Fluorochrome Use 

CD45RA HI100 eBioscience Protein tyrosine phosphatase rec. 1/100 PE Naive cells 

CD49d 

(α4-integrin) 

9F10 eBioscience Integrin protein 1/50 PE Homing 

CD56 B159 BD Pharmingen Isoform of NCAM 1/20 PE NK cell phenotype 

CD56 53G8 BD Pharmingen Isoform of NCAM 1/10 PE-Cy5 NK cell phenotype 

CD56 B159 BD Pharmingen Isoform of NCAM 1/10 APC NK cell phenotype 

CD62L 

(L-selectin) 

DREG56 eBioscience Cell adhesion molecule 1/50 FITC Homing 

CD69 L78 BD Pharmingen Early activation  1/50 PerCP Treg/NK cells 

CD94 HP-3D9 BD Pharmingen Killer cell lectin-like receptor 1/100 FITC NK cell precursor 

CD95 DX2 BD Pharmingen FAS receptor 1/10 FITC Death receptor 

CD117 104D2 BD Pharmingen Mast/SC growth factor receptor 1/100 PE NK cell precursor 

CD127 eBioRDR5 eBioscience IL-7α chain receptor 1/25 FITC Treg cell phenotype 

CD127 hiL-7R-M21 BD Pharmingen IL-7α chain receptor 1/50 PE Treg cell phenotype 

CD226(DNAM-1) DX11 BD Pharmingen DNAX accessory molecule-1 1/5 FITC NK cell function 

CD244(2B4) eBioPP35 eBioscience NK cell receptor 2B4 1/20 FITC NK cell function 

CTLA-4 BNI3 BD Pharmingen Cytotoxic T-lymphocyte antigen-4 1/25 PE Treg cell function 

CXCR1 42705 R&D Systems Chemokine receptor 1/10 PE Migration 

CXCR3 IC6 BD Pharmingen Chemokine receptor 1/5 APC Migration 

CXCR4 I2G5 R&D Systems Chemokine receptor 1/5 PE Migration 

CXCR7 358426 R&D Systems Chemokine receptor 1/100 PE Migration 

GITR 110416 R&D Systems Glucocorticoid-induced TNFR 1/25 FITC Treg cell function 

LAP 27232 R&D Systems Latency-associated peptide  1/10 PE Treg cell function 

LAMP-1 (CD107a) H4A3 BD Pharmingen NK cell degranulation marker 1/40 FITC NK cell function 

NKG2D BAT221 MACS Activating receptor 1/10 PE NK cell function 

NKp30 P30-15 BD Pharmingen NCR 1/100 PE NK cell function 

NKp44 P44-8 Biolegend NCR 1/10 APC NK cell function 

NKp46 9E2/NKp46 BD Pharmingen NCR 1/50 APC NK cell function 

β7 integrin FIB540 eBioscience Integrin protein 1/100 FITC Homing 
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2.7.1.1 Cell viability 

Cell viability was assessed using two markers: Annexin V, which is specific for 

phosphatidylserine expressed on the surface of apoptotic cells, and 7-AAD, 

which binds to double stranded DNA exposed once the cell membrane has 

been compromised. This combination allows the identification of three 

populations: live cells (Annexin V-/7-AAD-), early apoptotic cells (Annexin V+/7-

AAD-) and late apoptotic or necrotic cells (Annexin V+/7-AAD+). Figure 2.5 

shows the gating strategy used for all co-cultures to determine the viability of 

each cell type.  

 

 

Figure 2.5: 7-AAD/Annexin V gating strategy used to assess cell viability. CB NK cell and 
CB Treg cell viability was assessed by flow cytometry through the expression of CD4, CD56, 7-
AAD, and Annexin V. (A) Non-debris gate, (B) CD4 and CD56 unstained negative control, (C) 
CD4 and CD56 gating from the non-debris gate, (D) 7-AAD/Annexin V unstained negative 
control, E. CD56

+
 cell viability, (F) CD4

+
 cell viability. Region R1: Live cells; Region R2: Early 

apoptotic cells; Region R3 and R4: Late apoptotic and necrotic cells. Data is representative of 9 
independent experiments. 

 

To assess viability of specific cell populations, cells were labelled with CD4 for 

Treg cells and CD56 for NK cells (as described in the previous section). Cells 

were then resuspended in 1X Annexin V binding buffer (BD Pharmingen, UK). 

7-AAD and Annexin V were added 10 min before analysis.  
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2.7.2  Intranuclear staining protocol 

A minimum of 50 000 cells were stained using the Foxp3 Staining Buffer Kit 

(eBioscience, USA) following the manufacturer’s recommendations. The clone 

PCH101 (PE, eBioscience; 1/20 dilution) was used in this study.  

2.7.3 Cell sorting for NK cell differentiation 

Resting or TCR-stimulated Treg cells were added at day 9 of HSC cultures at a 

ratio of 1:4 (Treg cell:HSC) and co-cultured until day 12 or day 35 of 

differentiation. A total of 4-20x106 cells were labelled with CD4-PE, clone SK3 

(BD Biosciences, UK) and then sorted using a MoFlow cell sorter (Beckman 

Coulter). Sorted HSC were either cultured with irradiated EL08.1D2 feeder layer 

cells (protocol described in Section 2.6.3) or RNA was extracted for gene 

expression analysis. Purity was assessed by flow cytometry and ranged 

between 90.3% and 100% (n=21).  

2.8 Functional assays 

2.8.1 In vitro proliferation assays 

To determine cell proliferation, cells were labelled with carboxyfluorescein 

diacetate succinimidyl ester (CFSE) using the Cell Trace CFSE cell proliferation 

kit (Life Technologies, UK), which covalently labels long-lived intracellular 

molecules with high fluorescence intensity. The fluorescent signal halves every 

cell division, which makes it a reliable and easy technique to follow cell 

proliferation that can be detected by flow cytometry. Two different protocols 

were used for Treg cells and NK cells.  

 

Treg cells were labelled following an optimised protocol for low T cell numbers 

(Quah et al., 2007). A titration of CFSE concentration was performed with 2x106 

and 0.25x106 Treg cells activated with Dynabeads human T-activator 

CD3/CD28 (Life Technologies, UK). It was found that a 2.5 mM CFSE 

concentration gave the best division peaks after 96 h (Figure 2.6). Cells were 
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cultured as described in Section 2.6.2. Analysis by flow cytometry was 

performed at 0, 24, 48 and 120 h after CFSE addition. 

 

Figure 2.6: CFSE titration for low Treg cell numbers. 2x10
6
 and 0.25x10

6
 CB Treg cells were 

labelled with different CFSE concentrations and activated with Dynal Beads at 1:1 ratio (Treg 
cells:beads). Cell proliferation was measured by flow cytometry after three days. The red line 
depicts the overall proliferation profile and the blue lines are individual histograms for each cell 
division. The numbers show percentages of cells in each generation (0-8). Representative 
sample of three different experiments.  

 

For NK cells, a different protocol was followed. NK cells (1x106) were 

resuspended in 1 ml PBS without FBS and 2 µM CFSE was added (previously 

reconstituted in DMSO). Cells were incubated for 10 min at 37 °C, washed 

twice with chilled complete media, counted and resuspended as described in 

Section 2.6.2 except for Section 2.6.2 Protocol E, where cells were pre-

activated, washed and then CFSE-labelled.  

2.8.2  In vitro Treg cell suppression assay 

CB Treg cell suppression was measured by thymidine assay and CFSE assay 

(described in the previous section) according to a published study (Seddiki et 

al., 2006b). Both assays were performed in 96-well round-bottom plates with 

RPMI 1640 supplemented with 5% heat inactivated FBS, 0.05 mM β-

mercaptoethanol, 1% penicillin/streptomycin and 1 µg/ml anti-CD3, clone 

HIT3a, in a final volume of 200 µl. All wells contained 50 000 CFSE-labelled or 

non-labelled autologous effector cells (CBMCs or non-CD4+CD25high CB cells), 
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referred to as “responders” and 100 000 PBMCs irradiated at 30 Gy (3 000 rad) 

for 7 min, as APCs. Treg cells, referred to as “suppressors”, were added at a 

final suppressor:responder ratio of 0:1, 1:1 (50 000 cells), 1:4 (12 500 cells), 

and 1:10 (5 000 cells). Non-CD4+ T cells were added to the cultures instead of 

Treg cells as negative controls of suppression.  

 

For CFSE assays, CFSE-labelled responders were analysed after 72 h by flow 

cytometry. Results were expressed using the division index, which is the 

average number of cell divisions that a cell has undergone.  

 

For thymidine assays, the cultures were pulsed with 1µCi 3H-Thymidine (GE 

Healthcare, Sweden) and harvested 16-18 h later in a Microbeta filterMate-96 

harvester (Perkin Elmer, UK). Triplicates were carried out in all conditions. Cell 

proliferation was then measured in a liquid scintillation counter 1 450 Microbeta 

(Perkin Elmer, UK). Results were expressed in counts per minute (cpm), which 

is the measurement of particle emission rates that directly correlates with 

proliferation. Percentage of suppression was calculated using the following 

equation: 

 

!!!∀##∃%&&!!∀ !
!∀#!!∀#∃%!

!∀#!!∀#∃%∀&
! ! !!∀∀! 

2.8.3  Chromium release assay 

To determine the suppressive effect of Treg cells on cytotoxicity of NK cells 

chromium release assays were performed. This assay measures NK cell 

cytolytic activity against a leukaemia cell line, K562.  

 

K562 cells were washed with PBS and labelled with 100 µCi/1x106 cells 51-

Chromium (Perkin Elmer, UK) for 45 min at 37 °C. Cells were then washed 

twice with PBS and resuspended in complete media at a concentration of 5 000 

cells/100 µl. Treg cell and NK cell co-cultures (Table 2.1 and Table 2.2) were 

adjusted to reach ratios of NK cells (effector):K562 (target) of 1:1, 5:1 and 10:1, 

with a constant K562 cell number of 5 000 cells in 100 µl final volume. When 

there was a limited cell number, the ratios of NK cells: K562 of 1:1 and 5:1 were 
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excluded. As a positive control, 100 µl of 0.1% Triton X-100 (VWR International, 

UK) were added to K562 cells. After 4 h incubation at 37 °C, cells were 

centrifuged at 1 200 rpm for 4 min and 30 µl of supernatants were transferred to 

96-well sample plates (Perkin Elmer, UK) and left overnight to dry. The following 

day, 30 µl Optiphase Supermix scintillation solution (Wallac, UK) was added 

and chromium release was measured in a liquid scintillation counter 1 450 

Microbeta. All conditions were performed in triplicate and results were 

expressed in percentage of lysis to represent target lysis by NK cells. The 

percentage of specific lysis by NK cells was calculated using the following 

equation:  

 

!!!∀#∃%&%∃!!∀#∃#

!
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!!∀∀! 

2.8.4  NK cell degranulation assay 

The surface expression of CD107a (LAMP-1) is a marker of NK cell 

degranulation, which can be easily detected by flow cytometry. After culture 

(Table 2.1 and Table 2.2), NK cells were stimulated or not with K562 cells (1:1 

ratio; NK cell:K562), or 100 ng/ml Phorbol myristate acetate (PMA) (Sigma, UK) 

and 1 µg/ml Ionomycin (ION) (Sigma, UK) for 2 h at 37 °C, 5% CO2 as a 

positive control. Cells were washed and blocked for 15 min with 10% mouse 

serum in PBS. After blocking, cells were washed and stained with anti-CD56, 

anti-CD3 and anti-CD16 in 2% FBS, and 2 mM EDTA in PBS (Paisley, UK) 

(“staining buffer”) for 15 min at 4 °C. After another wash with staining buffer, 

cells were stained with anti-CD107a or isotype control for 45 min at 4 °C, 

washed and analysed by flow cytometry.  

2.8.5  Analysis of phosphorylation of Smad2/3 and Stat3 

TGF-β and IL-10 signalling pathways were analysed through the 

phosphorylation of Smad2 and Smad3 (for TGF- β) and Stat3 (for IL-10), key 

molecules in the corresponding signalling cascades. The intracellular 

expression of phosphorylated Smad2/3 and phosphorylated Stat3 was analysed 
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using the BD Phosflow kit: PE mouse anti-human Smad2 

(pS465/pS467)/Smad3 (pS423/pS425) (clone 072-670, BD Biosciences, UK), 

and PE mouse anti-human Stat3 (pY705) (clone 4-P/Stat3, BD Biosciences, 

UK). Before staining, cultured HSC were washed and resuspended in RPMI 

1640 for 2 h. This was done to reduce basal phosphorylation caused by high 

levels of FBS or AB serum. Cell viability in the absence of serum was confirmed 

using 7-AAD showing no difference between the conditions tested, Figure 2.7. 

!
Figure 2.7: HSC viability in absence of serum. HSC were washed and resuspended in NK 
media (A) or RPMI 1640 (B) for 2 h. Viability was measured by flow cytometry by assessing 
staining with 7-AAD on CD56

+
 gated cells. Data is representative of three independent 

experiments. 

!

After the 2 h incubation, HSC were cultured in the presence or absence of Treg 

cells at a ratio of 1:4 (Treg cell:HSC) in RPMI 1640. HSC treated with 10 ng/ml 

human recombinant TGF-β (BD Biosciences, UK) and 50 ng/ml human 

recombinant IL-10 (Prospec, Israel) were used as positive controls. After 15 

min, cells were resuspended in 100 µl BD Cytofix buffer (BD Biosciences, UK) 

and incubated at 37 °C for 15 min. The latest was pre-warmed in a 37 °C water 

bath for 10 min before use. Cells were then centrifuged at 1800 rpm for 5 min 

and supernatants were removed. 150 µl Perm buffer (BD Biosciences, UK) was 

added and incubated for 30 min at 4 °C. Cells were washed twice with 100 µl 

Stain buffer (BD Biosciences, UK) and resuspended in the same buffer (50 µl). 

The cells were stained with anti-CD4-APC (clone RPA-T4), washed and then 

stained with Smad2/3 or Stat3 at room temperature in the dark. For Smad 

phosphorylation, 1/10 dilution of anti-Smad2/3 PE or 1/10 dilution of mouse 

IgG1-PE isotype control (clone MOPC-21) were used whereas 1/5 dilution of 

anti-Stat3 PE or 1/5 dilution of mouse IgG2a isotype (clone MOPC-173) were 
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used for Stat phosphorylation. Cells were then washed with 200 µl Stain buffer, 

resuspended in the same buffer and immediately analysed by flow cytometry. 

2.8.6  Addition of recombinant human TGF-β and/or recombinant 
human IL-10 to HSC cultures 

To emulate how Treg cells suppress NK cell differentiation, human recombinant 

TGF-β and/or IL-10 were added to NK cell differentiation cultures (described in 

Section 2.6.3). Different concentrations of TGF-β and/or IL-10 were added 

every week after day 9 of culture. Cell viability was measured using 7-AAD.  

2.8.7 Transwell suppression assays 

To determine whether Treg cells inhibit NK cell differentiation in a cell contact 

dependent manner, HSC/Treg cell co-cultures were performed using HTC 

Transwell 96 Systems 0.4µm polycarbonate membrane plates (Corning, USA). 

These plates consist of two chambers separated by a 0.4µm porous membrane 

that allows exchange of soluble molecules between cells but prevents cell 

contact. The lower compartment was coated with 100 µl of 0.1% Bovine 

gelatine in PBS for 15-30 min at 37 °C, and then washed with PBS. Then, a 

concentration of 20 000 irradiated EL08.1D2 feeder layer cells/well (cultured 

and resuspended as described in Section 2.6.3) were added in a final volume of 

275 µl basic media and incubated at 32 °C, 5% CO2 and 96% humidity 

overnight. The following day, the basic media was removed and the Transwell 

insert was then placed in the receiver plate. Frozen HSC were thawed, 

resuspended in NK media (described in Section 2.6.3) at a concentration of 500 

cells/well in a 275 µl final volume and added to the lower compartment. Resting 

or TCR-stimulated CB Treg cells were added at day 9 of HSC cultures in the 

upper compartment. Treg cells were resuspended in NK media and their cell 

number was adjusted as to have a ratio of 1:4 (Treg cells:HSC) in a 75 µl final 

volume. Cultures underwent weekly hemi-depletion (described in Section 2.6.3) 

via the basolateral access port.  
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2.9 Enzyme linked immunosorbent assay 

IFN-γ, TGF-β, TNF-α and IL-10 secretion from all culture conditions were 

measured using the corresponding human Ready-set-go kits (eBioscience, 

USA) according to manufacturer’s protocols. Supernatants were collected from 

cultures with constant cell numbers: 200 000 cells for NK cells and 50 000 cells 

for Treg cells. Cell numbers in HSC cultures varied through time but was kept 

consistent between samples. All assays were performed with non-stimulated 

samples, except for IFN-γ, where K562 cells (1:1 ratio; NK cell:K562) and 100 

ng/ml PMA + 1 µg/ml ION (positive control) were used. Supernatants were 

stored at -20 °C until analysed. Samples were read using the BioTek Reader 

(BioTek USA) using KC Junior software (BioTek, USA). 

2.10  Molecular biology techniques 

2.10.1 RNA extraction 

RNA extraction was performed using the RNeasy mini kit (Qiagen, UK) 

following the manufacturer’s recommendations. To prevent RNase 

contamination, RNase Zap (Life Technologies, UK) was used to clean all 

materials and surfaces. Once extracted, RNA concentration was measured 

using the NanoDrop ND-1 000 spectrophotometer (Thermo Scientific, USA) and 

stored at -70 °C until used. 

2.10.2 Reverse transcription 

Complementary DNA (cDNA) was obtained using the Superscript III Reverse 

Transcriptase (Life Technologies, UK). An amount of 2 µl RNA at 100 ng/µl, 7 µl 

sterile distilled water, 2 µl Random Primers 600 µg/ml  (Promega, USA), and 1 

µl 25 mM dNTPS (25 mM each nucleotide) (Bioline, USA) were added and 

incubated in an Eppendorf Mastercycle thermocycler (Eppendorf, USA). First, 

the mixture was heated at 65 °C for 5 min and placed on ice for 5 min (optimal 

annealing temperature of primers). Then, 4 µl Buffer 5X, 2 µl DTT (100 mM) 

and 1 µl recombinant RNasin ribonuclease inhibitor 40 U/µl (Roche, 
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Switzerland) were added to the mixture. The mixture was then incubated at 25 

°C for 10 min, followed by 42 °C for 2 min. Then, 1 µl Superscript III Reverse 

transcriptase 200 U/µl (Life Technologies, UK) was added and the mixture was 

incubated at 42 °C for 50 min and 70 °C for 15 min. Finally, the cDNA was 

resuspended in 40 µl sterile distilled water and stored at -20 °C. Samples were 

used within three days.  

2.10.3 Real time PCR 

To assess gene expression, the Precision 2X qPCR Master Mix with Low ROX 

SYBRgreen (Primer Design, UK) was used. Optimal housekeeping genes were 

selected using a geNorm kit (Primer Design, UK) in the laboratory by Martha 

Luevano. ATP synthase 5B (ATP5B), ubiquitin C (UBC) and topoisomerase 1 

(TOP1) genes exhibited the best stability among the twelve genes tested; 

therefore they were used as reference genes throughout all experiments. 

Primers were chosen from published studies (Table 2.4) and primer 

concentrations and the PCR program standardised (not depicted). All primers 

were used at a concentration of 300 nM, except for TGF-β, IL-10, Foxp3, and 

Rorc at 900 nM. The PCR program was set as follows for all primers: 50 °C for 

2 min, 95 °C for 10 min and 40 cycles consisting of 95 °C for 15 s and 60 °C for 

1 min. To assure specificity, a dissociation stage was added after each reaction: 

1 cycle of 95 °C for 15 s, 60 °C for 1 min, 95 °C for 15 s, and 60 °C for 15 s. 

Results are presented as relative expression (cycle threshold (ct) target gene/ ct 

reference gene), where ct is defined as the number of cycles required for the 

fluorescent value to cross the threshold or baseline level of expression. Hence, 

the higher the ratio, the lower the amount of messenger RNA (mRNA) of the 

gene of interest.  

!  



Chapter 2: Materials and methods 

! 98 

Table 2.4: Primer sequences used for real time PCR. Information about sequences, product 
lengths (base pairs) and relevant reference are given. PL: product length, Id2: DNA-binding 
protein inhibitor, Tox: thymocyte selection-associated high mobility group box protein, Irf-2: 
interferon regulatory factor-2, Bcl11b: B-cell lymphoma/leukaemia 11B, Eomes: Eomesodermin. 
All primers were purchased from Sigma, UK. 

Gene 
 

Sequence 5'-3' PL Reference 

Bcl11b 
Fwd CTCTCACCCACGAAAGGCAT 

137 (Pinho et al., 2012) 
Rev GCACGCAGAGGTGAAGTGAT 

E4bp4 
Fwd CCAAGGGCCCCATCCATTC 

315 
(Vacca et al., 

2011) Rev GATGCCAGTGCTCCGATTTG 

Eomes 
Fwd ACTGGTTCCCACTGGATGAG 

160 
(Hertoghs et al., 

2010) Rev CCACGCCATCCTCTGTAACT 

Foxp3 
Fwd CACCTGGCTGGGAAAATGG 

63 (Sun et al., 2012)  
Rev GGAGCCCTTGTCGGATGAT 

Gata-3 
Fwd AGCACAGAAGGCAGGGAGTGT 

148 (Pinho et al., 2012) 
Rev TTCGCTTGGGCTTAATGAGGGGC 

Helios 
Fwd ACACCTCAGGACCCATTCTG 

129 (Cai et al., 2009) 
Rev TCCATGCTGACATTCTGGAG 

Id2 
Fwd CGGATATCAGCATCCTGTCC 

100 
(Cupedo et al., 

2009) Rev TCATGAACACCGCTTATTCAG 

IL-10 
Fwd TGAGAACAGCTGCACCCACT 

164 (Sun et al., 2012) 
Rev GGCAACCCAGGTAACCCTTA 

IFN-γ 
Fwd CCAGGACCCATATGTAAAAG 

144 
(Gober et al., 

2008) Rev TGGCTCTGCATTATTTTTC 

Irf-2 
Fwd CCTATGCAGAAAGCGAAACGACTGA 

122 (Pinho et al., 2012) 
Rev TCGAGTCCCCATGTTGCTGAGGT 

Pu.1 
Fwd TGTTACAGGCGTGCAAAATGGAAGG 

104 
(Bonadies et al., 
2010) Rev CTCGTGCGTTTGGCGTTGGTATAGA 

Rorc 
Fwd AGTCGGAAGGCAAGATCAGA 

192 
(Ortega et al., 
2009)  Rev CAAGAGAGGTTCTGGGCAAG 

T-bet 
Fwd GGATGCGCCAGGAAGTTTCA 

149 (Pinho et al., 2012) 
Rev CTCTGGCTCTCCGTCGTTCA 

Tgf-β 
Fwd GACTACTACGCCAAGGAGGTCA 

88 (White et al., 2010) 
Rev TGCTGTGTGTACTCTGCTTGAAC 

Tox 
Fwd TATGTGCCAGCCAGCCAGTCCTA 

92 (Pinho et al., 2012) 
Rev TGGTCTGGGAGGGAAGGAGGAGTAA 

2.11 Statistics 

Statistical analysis and graphs were prepared using PRISM v.5 (GraphPad 

Software,USA). Mann-Whitney non-parametric test or paired t-test was applied. 

Degree of significance was determined as p value<0.05.  
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3 Umbilical cord blood regulatory 
T cell phenotype and function 

3.1 Introduction 

CD4+CD25highFoxp3high Treg cells are a subtype of CD4+ T cells that primarily 

regulates other immune cell types including T cells (Takahashi et al., 1998, 

Thornton and Shevach, 1998, Thornton and Shevach, 2000, Trzonkowski et al., 

2004), B cells (Lim et al., 2005) and NK cells (Ghiringhelli et al., 2005). Because 

of their function, the use of Treg cells as an adoptive therapy has been 

proposed to reduce exacerbated reactions such as GvHD post-HSCT. 

However, characterisation of Treg cells, activation state, purity of isolations, cell 

doses, functionality and stability of Treg cells after infusion are parameters that 

still need further investigation to optimise a Treg cell therapy for GvHD.  

 

PB and CB have been proposed as potential cell sources for a Treg cell 

therapy. In particular, CB Treg cells have become more attractive than PB Treg 

cells due to their naivety and better capacity to maintain Foxp3 expression, two 

characteristics that allow them to maintain robust suppressive capacity and 

stability after expansion (Hoffmann et al., 2006). In addition, it has also been 

reported that CB Treg cells are more resistant to apoptosis than PB Treg cells 

(Miyara et al., 2009). In terms of function of CB Treg cells, some groups have 

demonstrated their capacity to suppress effector cells in vitro (Wing et al., 2005, 

Seddiki et al., 2006b), while others have shown that they are not suppressive 

(Wing et al., 2003, Thornton et al., 2004b, Chang et al., 2005, Fujimaki et al., 
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2008). The discrepancies observed between these studies could be due to the 

use of different culture conditions such as the choice of stimulus (soluble anti-

CD3 or IL-2), and/or the presence and source of APCs used.  

 

The coordinated action of chemokines secreted by target tissues mediates 

lymphocyte migration via cognate receptors (Moser and Loetscher, 2001). 

Human PB Treg cells express receptors that can mediate migration to lymphoid 

tissues (Grindebacke et al., 2009), inflammatory sites (Zhang et al., 2009), 

tumour sites (Redjimi et al., 2012) and BM (Zou et al., 2004). However little 

information is available about the homing properties of CB Treg cells 

(Grindebacke et al., 2009).  

 

This chapter investigates the phenotype and suppressive function of both 

resting and TCR-stimulated CB Treg cells. The aim is to identify differences 

between resting and TCR-stimulated CB Treg cells and to determine the 

conditions under which CB Treg cells are suppressive in vitro. Moreover, the 

trafficking repertoire of CB Treg cells in comparison to PB Treg cells was 

analysed under different conditions to understand their capacity to migrate to 

tissues where tolerance is required and to identify potential sites of NK cell/Treg 

cell interaction.  

!  
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3.2 Assessment of umbilical cord blood regulatory T cell 
purity and phenotype after isolation 

3.2.1 Phenotype of umbilical cord blood and peripheral blood 
regulatory T cells after isolation: a comparative study 

The purity of Treg cell isolations from CB and PB was assessed by flow 

cytometry using a published protocol (Figueroa-Tentori et al., 2008). The 

expression of CD4, CD25 and CD127 was analysed in accordance with a 

published Treg cell gating strategy (Liu et al., 2006), which demonstrates that 

low expression of the IL-7 receptor α-chain (CD127) directly correlates with 

Foxp3high cells (>90%), thus identifying Treg cells as CD4+CD25highCD127low 

(Figure 3.1) without requiring intracellular staining for Foxp3.  

 

In this study, the isolation purity of Treg cells from CD4+ T cells was lower for 

PB than CB (~73.9% and ~90.10% respectively, p=0.0009) (Figure 3.1A). This 

difference in purity can be explained by the presence of memory Tcon cells in 

PB that express CD25 (Figure 3.1C.2), but are absent in CB (Figure 3.1C.1). 

Furthermore, as it was aimed to co-culture CB Treg cells with CB NK cells, the 

frequency of Treg cells from total lymphocytes was also evaluated. 

Consistently, it was found that CB Treg cells exhibited higher purity in 

comparison to PB Treg cells with a median of 76.95% and 56.75% respectively 

(p=0.0002) (Figure 3.1B). Notably, recovery rates of Treg cells were 

comparable from both cell sources (~0.5-1%).  

 

Foxp3 is the signature marker of Treg cells. For this reason, the difference in 

density of expression of Foxp3 was analysed between CB and PB Treg cells. 

Interestingly, CD4+CD25highCD127low CB Treg cells showed lower Foxp3 

expression than PB Treg cells (MFI of 155 and 350, respectively), which is 

consistent with previously reported data (Milward et al., 2013) (Figure 3.1D.1-

D.2).  
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!
Figure 3.1: Purity and phenotypic comparison of resting CB Treg cells and resting PB 
Treg cells. (A) Assessment of purity of CB and PB Treg cells when gated on CD4

+
 cells. (B) 

Treg cell purity gated on total lymphocytes. n=62(CB) and n=9 (PB). (C.1-C.2) Flow cytometric 
analysis of CD25 and CD127 expression on CB and PB Treg cells, gated on CD4

+
 T cells. (D.1-

D.2) Foxp3 MFI on CD4
+
CD25

high
CD127

low
 Treg cells. Grey line: unstained. Data is 

representative of nine independent experiments.  

 

To further assess the phenotype of CB Treg cells, the expression of LAP, which 

is associated with Treg cell function was evaluated. LAP is a molecule that 

remains non-covalently bound to TGF-β in a complex called latent TGF-β 

(Khalil, 1999). Upon TCR-stimulation, LAP either undergoes conformational 

change or is degraded (Annes, 2003, ten Dijke and Arthur, 2007), thus allowing 

TGF-β release from the complex and activation. Hence, LAP expression can be 
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directly correlated with the availability of TGF-β in its soluble form or membrane 

bound on Treg cells (Stockis et al., 2009).  

 

In resting conditions, CB and PB Treg cells expressed LAP at a similar level 

(<10% LAP-positive Treg cells) (Figure 3.2A); however, CB Treg cells had 

lower LAP density than PB Treg cells (MFI of 1.78 and 4.44 respectively, 

p=0.03) (Figure 3.2B). Upon TCR-stimulation, CB and PB Treg cells had 

similar LAP expression in frequency (~80%) and density (MFI of 40), however 

LAP expression started to decline after 48 h stimulation, particularly for CB Treg 

cells (Figure 3.2A-B). These findings are consistent with published data, which 

report <4% LAP expression on resting PB Treg cells and <60% on TCR-

stimulated PB Treg cells (Stockis et al., 2009).  

 

 

Figure 3.2: Expression of LAP on Treg cells. Percentages (A) and MFI (B) of LAP expression 
as analysed by flow cytometry for CB and PB Treg cells after a “resting step” of 1 h or after 
TCR-stimulation for 48 and 120 h with soluble anti-CD3/soluble anti-CD28 and 600 IU/ml (for 
CB Treg cells) or 100 IU/ml (for PB Treg cells) IL-2. Cells were gated on CD4

+
CD25

high
CD127

low 

when resting and CD4
+
Foxp3

high
 when TCR-stimulated. n=3-7. 

!

3.2.2 TGF-β and IL-10 production by umbilical cord blood 
regulatory T cells 

TGF-β and IL-10 have been reported to be involved in Treg cell suppressive 

function (Annacker et al., 2001, Oida et al., 2006). As it has been suggested 

that Treg cells require TCR-stimulation to be suppressive (Thornton and 

Shevach, 1998, Takahashi et al., 2000), the production of these suppressive 

molecules by CB Treg cells was evaluated when resting and upon TCR-
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stimulation. CB Treg cells were isolated and cultured in the presence of IL-2 

(resting) or IL-2 and plate bound anti-CD3/soluble anti-CD28 (TCR-stimulated). 

Notably, the concentration of IL-2 used in these experiments did not cause 

significant activation but was essential for the survival and proliferation of CB 

Treg cells (Section 2.6.1). Supernatants were collected every 24 h over five 

days and analysed by ELISA to measure secreted TGF-β and IL-10.  

 

Resting and TCR-stimulated CB Treg cells secreted high levels of TGF-β, with 

levels remaining constant over the period studied (Figure 3.3A). Conversely, 

whilst resting CB Treg cells secreted low amounts of IL-10, TCR-stimulated CB 

Treg cells secreted increasing amounts of IL-10 with the duration of stimulation 

(Figure 3.3B).  

 

!
Figure 3.3: Assessment of IL-10 and TGF-β secretion by CB Treg cells. CB Treg cells were 
cultured with 1 000 IU/ml IL-2 (resting) or with 1 000 IU/ml IL-2 and plate bound anti-
CD3/soluble anti-CD28 (TCR-stimulated). Supernatants were collected at 0, 24, 48, 72 and 120 
h. TGF-β (A) and IL-10 (B) secretion in supernatants was analysed by ELISA. Complete media 
was used as negative control. n=4. 

3.3 Umbilical cord blood regulatory T cells display a 
naive phenotype upon TCR-stimulation 

CB has been identified as a potential source of Treg cells for adoptive therapy 

because the majority of CB Treg cells exhibit a naive phenotype (CD45RA+). 

This phenotype in PB has been associated with a homogenous population of 

Treg cells with higher Foxp3 expression, proliferative rate and suppressive 

capacity after expansion (Hoffmann et al., 2006). To evaluate whether CB Treg 

cells maintained naivety upon TCR-stimulation, the expression of markers 

associated with naivety on resting and TCR-stimulated CB Treg cells was 

A B 

0 24 48 72 120
0

5

10

100

200

300

350

400

Resting Activated

Time (hours)

IL
-1

0
 s

e
c
re

ti
o
n
 (
p
g
/
m

l)

0 24 48 72 120
0

1000

2000

3000

4000

Resting Activated Media only

Time (hours)

T
G

F
-β

 s
e
c
re

ti
o
n
 (
p
g
/
m

l)

Resting Activated Media only



Chapter 3: Umbilical cord blood regulatory T cell phenotype and function 

! 105 

assessed. For the latter, the TCR-stimulation protocol described in Chapter 2 

(plate bound anti-CD3/soluble anti-CD28 and IL-2) was used to assess whether 

CB Treg cells switch from a naive to a memory phenotype (CD45RA- cells) after 

stimulation. It was found that the majority of resting and TCR-stimulated CB 

Treg cells express CD45RA after stimulation and therefore have a naive 

phenotype (Figure 3.4A) with no difference in MFI over the period studied 

(Figure 3.4B).  

 

 

Figure 3.4: Assessment of CD45RA expression on CB Treg cells. Flow cytometric analysis 
of CD45RA expression as percentages (A) and MFI (B) on resting (black) and TCR-stimulated 
(red) CB Treg cells (gated on CD4

+
Foxp3

high
). CB Treg cells were TCR-stimulated using plate 

bound anti-CD3/soluble anti-CD28 and IL-2 (1 000 IU/ml). The lines represent medians. n=3-4. 

 

CCR7 and L-selectin, homing receptors associated with migration to SLT, are 

expressed on naive but not on memory T cells, suggesting the use of these 

markers as a complementary strategy to identify naive T cells (Sallusto et al., 

1999). Notably, the expression of these receptors on naive PB Treg cells has 

also been reported (Ermann et al., 2005, Valmori et al., 2005). Therefore, to 

fully evaluate whether CB Treg cells maintain a naive phenotype upon TCR-

stimulation, the expression of these two receptors on resting and TCR-

stimulated CB Treg cells was assessed. Interestingly, constant and high levels 

of expression of these two markers were observed on CB Treg cells in resting 

conditions and upon TCR-stimulation with a median of ~95% expression for L-

selectin and 96% expression for CCR7 over the period studied (Figure 3.5). 

Collectively, these results suggest that CB Treg cells maintain a naïve 

phenotype for up to 120 h upon TCR-stimulation, under the conditions used in 

this study.  
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Figure 3.5: L-selectin and CCR7 expression on CB Treg cells. Flow cytometric analysis of L-
selectin (black) and CCR7 (red) expression on TCR-stimulated CB Treg cells (gated on 
CD4

+
Foxp3

high
). CB Treg cells were TCR-stimulated using plate bound anti-CD3/soluble anti-

CD28 and IL-2 (1 000 IU/ml). The lines represent medians. n=8-10. 

3.4 Umbilical cord blood regulatory T cells proliferate 
upon TCR-stimulation 

Recent studies from Miyara and colleagues (Miyara et al., 2009) have 

demonstrated that PB Treg cells proliferate upon TCR-stimulation and exposure 

to IL-2 and/or Tcon cells (source of IL-2). In the present study, all CB Treg cells 

express CD45RA. Therefore, the ability of Treg cells to proliferate in the 

presence of high levels of IL-2 and TCR-stimulation was investigated. 

Proliferation was analysed using CFSE, which can be used to measure the 

number of divisions a cell has undergone (Lyons and Parish, 1994). CB Treg 

cells proliferate upon TCR-stimulation and underwent one division after 24 h, 

and up to five divisions after 120 h (Figure 3.6). This suggests that CB Treg 

cells are responsive and can proliferate upon stimulation.  
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Figure 3.6: CB Treg cell proliferation upon TCR-stimulation. CFSE labelled CB Treg cells 
were TCR-stimulated with plate bound anti-CD3/soluble anti-CD28 and IL-2 (1 000 IU/ml), and 
analysed by flow cytometry at 0 (black), 24 (red), 48 (blue) and 120 h (green). Cells were gated 
on CD4

+
Foxp3

high
 cells. (A) Representative histogram plots. Data is representative of four 

independent experiments, (B) MFI and division index. Cells were gated on CD4
+
Foxp3

high
 cells. 

The lines represent medians. n=4. 

3.5 Umbilical cord blood regulatory T cells are 
suppressive in vitro  

It is currently not clear whether CB Treg cells are suppressive because of 

contradictory results between studies performed by different groups. This could 

be explained by the difference in the conditions used in the reported 

suppressive assays (i.e. source of responders, stimuli, and/or presence and 

source of APCs). In this study, the suppressive capacity of CB Treg cells was 

assessed in vitro based on a method developed by Seddiki and colleagues 

(Seddiki et al., 2006b). For this method, CB Treg cells are co-cultured with 

autologous CB CD4+ Tcon cells and irradiated PBMCs as APCs, in the 

presence of soluble anti-CD3. Proliferation was measured by titriated thymidine 

(3H) incorporation after 72 h culture. Overall, CB Treg cells were capable of 

suppressing proliferation of CB CD4+ Tcon by ~60% at a 1:1 Treg cell:Tcon cell 

ratio (p=0.009) and ~40% at a 1:4 ratio (p=0.01), but showed no significant 

suppressive capacity at a 1:10 ratio (Figure 3.7A-B). 
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CD3. Proliferation was measured at 72 h by flow cytometry. CB Treg cells 

suppressed the proliferation of CB CD4+ Tcon cells when co-cultured at a 1:1 

ratio reducing the number of divisions by 55% (p=0.02) and by ~20% at a 1:4 

ratio (p=0.01) (Figure 3.7C). Hence, both assays demonstrated the suppressive 

capacity of CB Treg cells when a Treg cell:Tcon cell ratio of a minimum of 1:4 

was used.  

 

!
Figure 3.7: Suppression of proliferation of Tcon cells by CB Treg cells in vitro. (A.1) 
Suppression of proliferation by thymidine assay in cpm at 72 h. (A.2) Summary plot of A.1 at 72 
h. (B) Percentage of suppression of Treg cells over Tcon cells. ([(cpm target/cpm control)-
1]*100). (C) Suppression of proliferation of CFSE labelled “responders” (CD4

+
CD25

-
) at 72 h. 

Treg cells (CD4
+
CD25

high
CD127

low
) or Tcon cells (CD4

+
CD25

-
), referred to as “suppressors” 

were cultured at different ratios indicated on the x-axis. Irradiated PBMCs were used as APCs 
and 1 µg/ml soluble anti-CD3 as stimulus. The lines represent medians of three independent 
experiments. 

3.6 Trafficking repertoire of umbilical cord blood and 
peripheral blood regulatory T cells under resting 
conditions and upon TCR-stimulation 

Grindebacke and colleagues described the expression of homing receptors 

such as α4 and β7 integrins, CCR7 and L-selectin to be crucial for CB Treg 
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between the immune system and pathogens during early life (Grindebacke et 

al., 2009). To my knowledge, no information is available on the expression of 

receptors involved in trafficking of CB Treg cells to other tissues such as the BM 

and inflammatory sites, which are potential tissues in which the interaction 

between Treg cells and NK cells could take place. 

 

Analysis of the trafficking repertoire of CB and PB Treg cells has been extended 

to include CXCR4 and CXCR7 expression (homing to the BM) as it has been 

shown that the BM is a significant reservoir and priming site of CD4+ Tcon 

(Feuerer et al., 2001, Feuerer et al., 2003) and Treg cells (Zou et al., 2004), and 

the main site of NK cell differentiation. In addition, the expression of CCR5 

(Zhang et al., 2009), CCR6 (Yamazaki et al., 2008), CXCR1 (Eikawa et al., 

2010) and CXCR3 (Duffner et al., 2003) on Treg cells was also assessed as 

these markers are associated with migration to inflammatory sites under 

pathological conditions and to target organs in GvHD (Wysocki et al., 2005). 

 

Since TCR-stimulation is a factor that changes the migratory repertoire of Treg 

cells (Ding et al., 2012), the expression of the aforementioned receptors was 

analysed in resting and TCR-stimulated conditions. This analysis sought to 

provide a comparison of the migration repertoire of CB and PB Treg cells in 

order to correlate the results from this study with results reported in the 

literature for PB Treg cells. 

3.6.1 Expression of homing receptors on regulatory T cells under 
resting conditions 

Freshly isolated CB Treg cells expressed all the aforementioned markers 

(Figure 3.8). β7 integrin expression was higher on CB Treg cells compared to 

PB Treg cells (p=0.004) (Figure 3.8A). Conversely, L-selectin (p=0.008), CCR5 

(p=0.05), CCR6 (p=0.05), CXCR1 (p=0.04) and CXCR3 (p=0.01) expression 

was lower on CB Treg cells than on PB Treg cells (Figure 3.8A). Regarding 

MFI, only the inflammation-associated markers, CCR5 (p=0.05), CCR6 (p=0.05) 

and CXCR1 (p=0.05), showed higher density of expression on PB Treg cells 

(Figure 3.8B). These results suggest that resting CB Treg cells display a 

different trafficking and migration repertoire than resting PB Treg cells.  
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!
Figure 3.8: Expression of surface markers involved in homing and migration of freshly 
isolated CB and PB Treg cells. Flow cytometric analysis of migration receptors on CB Treg 
cells (black) and PB Treg cells (red). Data is presented as frequency of expression (A) and MFI 
(B) from CD4

+
CD25

high
CD127

low
 gated Treg cells. Cells were isolated and cultured for 1 h with 

RPMI and 1% BSA without fatty acids prior staining. The lines represent medians. *, p value ≤ 
0.05, **, p value ≤ 0.01. n= 3-10. 

 

3.6.2 Expression of homing receptors on regulatory T cells upon 
TCR-stimulation 

To evaluate whether CB Treg cells exhibit a similar phenotype to PB Treg cells 

upon TCR-stimulation, CB and PB Treg cells were TCR-stimulated with soluble 

anti-CD3/soluble anti-CD28 and IL-2 and then their trafficking repertoire was 

analysed by flow cytometry at two different time points (Figure 3.9). 
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!
Figure 3.9: Expression of markers involved in homing and migration on CB and PB Treg 
cells upon TCR-stimulation. Flow cytometric analysis of migration receptors on CB Treg cells 
(black) and PB Treg cells (red) activated with soluble anti-CD3/soluble anti-CD28 and IL-2 (600 
IU/ml for CB Treg cells and 100 IU/ml for PB Treg cells) after 48 and 120 h stimulation. Data 
represent frequency of expression (A and C) and MFI (B and D) from CD4

+
Foxp3

high
 gated Treg 

cells. n= 3-10. The lines represent medians. *, p value ≤ 0.05, **, p value ≤ 0.01, *** p value ≤ 
0.001.  

 

Upon TCR-stimulation, the expression of α4 and β7 integrins was significantly 

higher on CB Treg cells after 48 h stimulation (p=0.002 and p=0.007, 

respectively) (Figure 3.9A) and 120 h stimulation (p=0.004 and p=0.002, 

respectively) (Figure 3.9C). Likewise, CCR7 expression was higher on CB Treg 

cells after 48 h stimulation (p=0.003) (Figure 3.9A), however CB and PB Treg 

cells showed similar CCR7 expression after 120 h stimulation (Figure 3.9C). In 

addition, CB and PB Treg cells expressed high levels of L-selectin (~95%) over 

the period studied (Figure 3.9A,C). Importantly, CXCR4 expression was 

constant on CB and PB Treg cells, suggesting that Treg cells have the capacity 

to migrate to the BM where NK cell differentiation and maturation occurs 

(Figure 3.9C). Lastly, lower expression of the receptors associated with 

migration to inflammation sites was observed on CB Treg cells in comparison to 
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PB Treg cells: CCR5 after 48 h stimulation (p=0.008) (Figure 3.9A), CCR6 after 

48 and 120 h stimulation (p=0.0007 and p=0.005, respectively) (Figure 

3.9A,C), and CXCR3 after 48 and 120 h stimulation (p=0.02 and p=0.01, 

respectively) (Figure 3.9A,C).  

 

As for the density of expression (MFI), integrins α4 (p=0.007) and β7 (p=0.02), 

CCR7 (p=0.003) and CXCR4 (p=0.02) showed higher levels on CB Treg cells 

than PB Treg cells after 48 h stimulation (Figure 3.9B); however, only CXCR4 

(p=0.02) had higher expression levels after 120 h stimulation (Figure 3.9D). In 

contrast, CCR6 (p value t48h=0.006, p value t120h=0.01), CXCR1 (p value t48h, 

120h=0.02) and CXCR3 expression (p value t48h=0.001, p value t120h=0.01) was 

higher on PB Treg cells than on CB Treg cells at both time points analysed 

(Figure 3.9B,D).  

3.6.3 Summary of homing and migration receptor repertoire on 
resting and TCR-stimulated regulatory T cells 

 

To summarise, three different patterns of expression of homing and trafficking 

receptors on CB Treg cells were detected (Figure 3.10A): one group of markers 

that were constitutively expressed (integrins α4 and β7, L-selectin, CCR7 and 

CXCR4), one group of markers that were highly expressed under resting 

conditions but whose expression was greatly reduced upon TCR-stimulation 

(CCR5, CCR6, CXCR1 and CXCR3) and a group of markers that showed low 

level of expression, which decreased over the period studied (CXCR7). 

 

The same trend was observed for PB Treg cells except that the markers whose 

expression that decreased upon TCR-stimulation can be further subdivided into 

two groups; those that showed a pronounced reduction in expression (CXCR1 

and CCR5) and those that showed a modest decrease in expression (CCR7, 

CXCR3, CCR6, and α4 and β7 integrins). Moreover, PB Treg cells constitutively 

expressed CXCR4 and L-selectin, whereas CXCR7 was expressed at a low 

level and its expression decreased over the period studied (Figure 3.10B).  
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Finally, the expression of markers associated with activation of CB and PB 

Tregs cells after TCR-stimulation was evaluated (Figure 3.10A-B). CD69 

expression by T cells appears early after stimulation. Once expressed, CD69 

functions as a co-stimulatory molecule for T cell stimulation and proliferation 

(Ziegler et al., 1994). In this study, CD69 expression was observed on CB and 

PB Treg cells after 48 h stimulation but then decreased after 120 h (Figure 

3.10A-B). It is noteworthy that this receptor is an early marker of activation, 

which could explain the low expression at the time points analysed. It is 

possible that the peak of expression for this marker is earlier than 48 h but this 

was not analysed.  

 

The expression of GITR is also induced on Treg cells after stimulation (Allan et 

al., 2007) and acts as a co-stimulatory receptor for T cell stimulation (Ronchetti 

et al., 2004). In this study, high expression of GITR was observed after TCR-

stimulation for both CB and PB Treg cells, 48 h being the time point where 

GITR expression was the highest (Figure 3.10A-B).  

 

Another marker of activation is CTLA-4, which is a negative regulator of T cell 

activation, expressed after T cell stimulation. Hence, besides its function as an 

indirect mediator of suppression of Treg cells via DCs, it can also be used to 

analyse the activation status of Treg cells (Yamazaki et al., 2003, Allan et al., 

2007). In this study, CTLA-4 was also upregulated after 48 h TCR-stimulation 

for both CB and PB Treg cells (Figure 3.10A-B).  

 

Finally, the expression of LAP as an activation marker was also analysed due to 

its specific upregulation on Treg cells upon TCR-stimulation (Stockis et al., 

2009). Similarly to GITR and CTLA-4, the highest expression of this receptor 

was observed after 48 h TCR-stimulation (Figure 3.10A-B). Collectively, the 

expression of these four receptors demonstrates that both CB and PB Treg 

cells are activated following 48 h TCR-stimulation.  
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Figure 3.10: Kinetics of expression of homing and activation markers on CB and PB Treg 
cells. Flow cytometric analysis of surface markers involved in homing and activation of CB Treg 
cells (A) and PB Treg cells (B) at different time points post-activation. Treg cells were gated on 
CD4

+
Foxp3

high 
except for time=1h, in which cells were gated on CD4

+
CD25

high
CD127

low
. The 

lines represent medians. n=5-10. 
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3.7 Discussion 

The use of CB as a source of Treg cells for cell therapy has become more 

attractive. This is due to the fact that CB Treg cells are a more homogeneous 

population with profound suppressive capacity and ability to express Foxp3 

after expansion (Hoffmann et al., 2006). In recent years, major progress has 

been made to evaluate the safety of using CB Treg cells in the clinic (Brunstein 

et al., 2011b). However complications such as a lack of Treg cell persistence 

and maintenance of tolerance in vivo require a thorough understanding of the 

optimal conditions under which CB Treg cells suppress and of the homing 

properties that these cells exhibit in order to reach target tissues in vivo. Hence, 

this chapter evaluated the phenotype of resting and TCR-stimulated CB Treg 

cells and analysed their suppressive capacity against CD4+ Tcon cells. In 

addition, a panel of ten homing and chemokine receptors were analysed for the 

purpose of identifying potential NK cell/Treg cell interaction sites.  

 

Low purity and yield of Treg cell isolations are still major challenges for Treg 

cell-based adoptive therapies. Importantly, it has been found that because of 

differences in T cell phenotype between CB and PB, it is possible to isolate 

Treg cells with higher purity from CB using magnetic column based-cell 

separation systems (Bresatz et al., 2007, Figueroa-Tentori et al., 2008, Milward 

et al., 2013). When PB Treg cells are isolated using a CD4+CD25+ selection, a 

population of CD25+ memory T cells is co-purified with PB Treg cells, whereas 

CB Treg cells isolated using the same method show a clear delineation 

between CD25- Tcon cells and CD25high Treg cells. This study confirms that 

isolated CB Treg cells are of higher purity than PB Treg cells with comparable 

recovery percentages of ~0.5-1%.  

 

The phenotype of CB Treg cells was assessed by analysing the expression of 

Foxp3, LAP, and by the secretion IL-10 of and TGF-β, which are both crucial for 

Treg cell-mediated suppression. Lower density of Foxp3 expression was found 

in CB Treg cells than in PB Treg cells, which is consistent with previous studies 

(Miyara et al., 2009, Milward et al., 2013). Miyara and colleagues observed that 
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CD45RA+ naive PB Treg cells, despite their lower Foxp3 density, maintain high 

levels of Foxp3 after expansion and thus provide stability and potential 

plasticity, as compared to mature Treg cells (Miyara et al., 2009). Furthermore, 

similarly to PB Treg cells, CB Treg cells exhibited high levels of LAP after 48 h 

stimulation with a dramatic decrease after 120 h stimulation, which is in 

contradiction with what has been described by Milward and colleagues for CB 

Treg cells (Milward et al., 2013). The expression of this marker directly 

correlates with the availability of TGF-β (Stockis et al., 2009) and with a more 

suppressive Treg cell population. Notably, CD4+CD25+LAP+ cells have been 

found to be more suppressive in vitro and in vivo when compared to 

CD4+CD25+LAP- Treg cells (Chen et al., 2008). In addition, it was found that CB 

Treg cells secrete TGF-β and IL-10 upon stimulation, which is consistent with 

published data for CB Treg cells where a different stimulation method was used 

(Godfrey et al., 2005). The expression of LAP on Treg cells has also been 

associated with the secretion of TGF-β and IL-10 in mice (Chen et al., 2008).  

 

As previously mentioned, some studies have highlighted CD45RA+CD4+Foxp3+ 

Treg cells as a more beneficial population to consider for cell therapy as 

compared to memory Treg cells (Hoffmann et al., 2006, Miyara et al., 2009). 

The results presented here show that the majority of CB Treg cells are positive 

for CD45RA under resting conditions, which is consistent with published data 

(Milward et al., 2013). However, it was uncertain whether CB Treg cells could 

still maintain a naive phenotype upon TCR-stimulation. Interestingly, after 120 h 

of TCR-stimulation with plate bound anti-CD3/soluble anti-CD28 and high 

concentrations of IL-2, the expression of CD45RA, L-selectin and CCR7 

remained high on CB Treg cells. This suggests that over the period studied and 

under the conditions of stimulation used, CB Treg cells maintain a naive 

phenotype. Notably, several authors have reported the importance of CCR7 

and L-selectin for Treg cell-mediated suppression. For instance, naive Treg 

cells from knockout CCR7 mice have impaired suppressive capacity (Menning 

et al., 2007), while the L-selectin subset of CD4+CD25+ Treg cells show more 

potency to protect against acute GvHD (Ermann et al., 2005) and to control 

diabetes (Szanya et al., 2002). Hence, It would be interesting to study longer 

time points and other markers associated with maturation such as CD45RO 
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(memory marker) in order to determine when and under which conditions the 

switch between naive and memory phenotype for CB Treg cells occurs after 

TCR-stimulation. 

 

Furthermore, TCR-stimulation and addition of exogenous IL-2 induced 

proliferation of CB Treg cells in this study, which is in contradiction with the 

results presented by Miyara and colleagues using CD45RA+ PB Treg cells 

(Miyara et al., 2009). However, unresponsiveness of naive Treg cells might be 

caused by the suppression of memory Treg cells also present in the culture 

from PB, or alternatively by the death of memory Treg cells. In addition, Li and 

colleagues analysed the importance of exogenous IL-2 for CB Treg cell 

proliferation (Li et al., 2005). They observed that TCR-stimulated CB Treg cells 

do not proliferate unless IL-2 is present as this cytokine can revert Treg cells 

from an anergic state. The results presented here are in agreement with this 

study, highlighting the importance of IL-2 for CB Treg cell proliferation.  

 

Importantly, CB Treg cells were able to suppress Tcon cells in the presence of 

adult APCs and polyclonal stimulation (plate bound anti-CD3) with a minimum 

ratio of 1:4 (Treg cells:CD4+ Tcon cells). This threshold of cell ratio is consistent 

with what has been reported by Brunstein and colleagues who also showed this 

Treg cell:Tcon cell ratio to be suppressive in their study (Brunstein et al., 

2011b).   

 

The expression of homing and chemokine receptors is crucial for Treg cells to 

reach specific tissues to exert suppression. Resting and TCR-stimulated CB 

Treg cells expressed markers that are associated with homing to secondary 

lymphoid organs (CCR7 and L-selectin) and to the gut (integrin α4 and β7). The 

latter favours the hypothesis of Grindebacke and colleagues (Grindebacke et 

al., 2009) who described the importance of the gut as the primary site of antigen 

exposure for T cells in early life where the first exposure to maternal microbiota 

occurs (Kelly et al., 2007). As for markers associated with inflammation, both 

CB and PB Treg cells showed the same expression patterns, with the exception 

that PB Treg cells maintained a higher frequency of these markers over the 

period studied. These results suggest that PB Treg cells may have a higher 
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capacity to migrate to inflammatory sites, but this requires further investigation. 

Notably, CB Treg cells express CXCR4, regardless of their stimulation state. 

This is consistent with published data that showed high frequencies of PB Treg 

cells in the BM, thus suggesting the BM as a reservoir for Treg cells (Zou et al., 

2004). Hence, CB Treg cells express receptors associated with homing to the 

BM, LN, tumour and inflammatory sites.  

 

It has been reported that resting CB NK cells express markers associated with 

migration to the BM (CXCR4), inflammatory sites (CXCR1 and CXCR3) and the 

gut (α4 integrin), but expressed low levels of markers associated with migration 

to LN (CCR7 and L-selectin) (Luevano et al., 2012a)(Alnabhan et al, 

unpublished data). This data is consistent with reports in mice which 

demonstrate that under certain conditions NK cells can lyse tumour cells in the 

LN (Chen et al., 2005, Berahovich et al., 2006, Garrod et al., 2007) and migrate 

to tumour sites via upregulation of CXCR3 (Walser et al., 2007). Hence, given 

the comparable patterns of homing receptor expression of CB NK cells and 

Treg cells, this study proposes that the BM, LN (under certain conditions), 

tumour and inflammatory sites are potential locations of Treg cell/NK cell 

interaction.  

 

Overall, the data presented in this chapter suggests that CB Treg cells are a 

regulatory population with a naive phenotype that exhibit in vitro suppressive 

capacity. The ideal cell ratio for CB Treg cells to suppress was 1:4 (Treg 

cells:Tcon cells), which was used for subsequent suppression assays using NK 

cells presented in chapters 4, 5 and 6. Finally, it was demonstrated that both 

CB Treg cells and CB NK cells express markers associated with migration to 

the BM, LN (under certain conditions) and inflammatory sites, suggesting that 

interaction between these cells may take place in the aforementioned tissues.  
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4 Effect of umbilical cord blood 
regulatory T cells on natural 
killer cell phenotype and 
function 

4.1 Introduction 

The interaction between NK cells and Treg cells has been described during 

pregnancy as well as in pathological conditions such as viral infections, 

autoimmune diseases and cancer. Therefore, the work of several groups has 

focused on understanding the importance of this interaction using in vitro 

studies using human cells (Ghiringhelli et al., 2005, Romagnani et al., 2005, 

Bergmann et al., 2011) and in mice (Ghiringhelli et al., 2005, Smyth et al., 2006, 

Ralainirina et al., 2007, Zimmer et al., 2008, Lundqvist et al., 2009, Pedroza-

Pacheco et al., 2013). Notably, it has been shown that Treg cells can inhibit NK 

cell functions such as natural cytotoxicity and cytokine production (Trzonkowski 

et al., 2004, Ghiringhelli et al., 2005, Smyth et al., 2006, Lundqvist et al., 2009, 

Sun et al., 2010, Zhou et al., 2010, Bergmann et al., 2011), can downregulate 

receptors involved in NK cell cytotoxicity such as NKG2D (Ghiringhelli et al., 

2005, Bergmann et al., 2011) and NKp44 (Bergmann et al., 2011), and can 

inhibit NK cell proliferation (Romagnani et al., 2005, Kim et al., 2007) (Table 

1.3). Similarly to what has been described for the effect of Treg cells on CD4+ 

Tcon cells, all these studies identified three specific conditions that are required 

for Treg cell-mediated suppression of NK cells: (i) absence of cytokines, (ii) a 



Chapter 4: Effect of umbilical cord blood regulatory T cells  
on natural killer cell phenotype and function 

! 120 

minimum ratio of Treg cells per target cell (in this case NK cells), (iii) and TCR-

stimulation of Treg cells (Godfrey et al., 2005, Pandiyan et al., 2007). 

 

One of the theories by which Treg cells can mediate suppression is by the 

depletion of cytokines. In order to prevent NK cell activation, human Treg cells 

can deprive NK cells of cytokines such as IL-2 under homeostatic conditions 

(Ghiringhelli et al., 2005). This suppression can be overcome during 

inflammation by the presence of exogenous IL-2, IL-4, IL-7 (Ghiringhelli et al., 

2005), IL-12 or IL-18 (Lee et al., 2012). Gasteiger and colleagues have recently 

confirmed that this mechanism of cytokine deprivation also occurs in mice 

(Gasteiger et al., 2013a, Gasteiger et al., 2013b). They observed that Treg cells 

can regulate the activation of NK cells by controlling the availability of IL-2, 

however under inflammatory conditions such as acute infection, NK cells could 

overcome this inhibition. Concurrently, Sitrin and colleagues observed similar 

results in a mouse model of diabetes suggesting a general mechanism of Treg 

cell-mediated NK cell regulation, which depends on environmental signals 

(Sitrin et al., 2013). 

 

Treg cell-mediated suppression is also regulated by the ratio of Treg cells to 

target cells. The optimal Treg cell dose required for suppression of Tcon cells in 

patients is still under investigation (Brunstein et al., 2011b, Di Ianni et al., 2011), 

however in vitro assays show that a minimum ratio of 1:5 (Treg cells:Tcon cells) 

is necessary for suppression to occur (Seddiki et al., 2006b, Brunstein et al., 

2011b). The ratio between Treg cells and NK cells used in suppression assays 

(Ghiringhelli et al., 2005, Sun et al., 2010, Bergmann et al., 2011) is similar to 

those reported between CD4+ Tcon cells and Treg cells (Seddiki et al., 2006a, 

Brunstein et al., 2011b), ranging in vitro between ratios of 1:5 and 1:1 (Treg 

cells:CD4+ Tcon cells or NK cells). 

 

Finally, TCR stimulation is essential for Treg cells to suppress (Thornton and 

Shevach, 2000). Treg cells can suppress NK cell functions directly by 

sequestering IL-2 (Sitrin et al., 2013), via TGF-β (Ghiringhelli et al., 2005), or 

indirectly through the control of CD4+ Tcon cells (Romagnani et al., 2005). It is 

also important to mention that, once stimulated, Treg cells can suppress any 
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cell type regardless of antigen specificity (Thornton and Shevach, 2000). 

However, Ghiringhelli and colleagues have shown that PB Treg cells can also 

inhibit effector functions of NK cells in the absence of TCR-stimulation, thus 

challenging the concept of TCR-stimulation as a requirement for suppression 

(Ghiringhelli et al., 2005). These authors observed that membrane-bound TGF-

β is sufficient to inhibit the function of resting NK cells.  

 

Regulation of Treg cell suppression by NK cells has also been reported. In 

humans and mice, Brillard and colleagues reported that the efficacy of 

autologous IL-2 activated NK cells to block pTreg cell differentiation depends on 

high levels of IFN-γ, which favours the development of a Th1 response 

regardless of the presence of soluble TGF-β (Brillard et al., 2007). This is in 

agreement with the observations of Beriou and colleagues, who proposed that 

inflammation might induce Treg cells to lose their suppressive capacity and to 

produce IL-17, which is a pro-inflammatory cytokine (Beriou et al., 2009). In 

addition, Roy and colleagues reported reduced pTreg cell proliferation, but not 

tTreg cell proliferation, in the presence of NK cells in the context of microbial 

infections (Roy et al., 2008). Furthermore, increased numbers of tTreg cells 

were observed in a mouse model of prostate carcinoma following NK cell 

depletion (Chin et al., 2010). 

 

To date, no studies have assessed the impact of the interaction between Treg 

cells and NK cells using CB as a cell source. Given that CBT is being 

increasingly used (Ballen et al., 2013), it is important to evaluate the impact of 

the interaction between Treg cells and NK cells in this context.  

 

This chapter aims to investigate whether CB Treg cells can suppress CB NK 

cell functions in a non-APC dependent in vitro system. First, the ability of CB 

Treg cells to suppress PB NK cells was assessed using the protocol from 

Ghiringhelli and colleagues (Ghiringhelli et al., 2005), as a comparative study. 

Next, it was determined whether CB Treg cells require prior stimulation to exert 

suppression of NK cells and if this suppression is dependent on the activation 

status of NK cells (i.e. resting or activated NK cells). Also, the impact of CB NK 

cells on CB Treg cell viability was assessed. Finally, to determine whether 
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mismatched Treg cells enhance or diminish the effect of Treg cells on NK cells 

the aforementioned experiments were performed with both autologous and 

allogeneic CB Treg cells.  

!  
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4.2 Peripheral blood natural killer cells are suppressed 
by peripheral blood regulatory T cells but not 
umbilical cord blood regulatory T cells 

The ability of Treg cells to regulate NK cell cytotoxicity has been observed in 

humans and mice. As previously mentioned, Ghiringhelli and colleagues 

reported suppression of PB NK cells by PB Treg cells in vitro (Ghiringhelli et al., 

2005). They showed ~85% reduction in killing of MHC class I-deficient K562 

cells by NK cells in the presence of PB Treg cells at a 1:4 Treg to NK cell ratio. 

As shown in the previous chapter and by Godfrey and colleagues, CB Treg 

cells are capable of suppressing CB CD4+ Tcon cells (Godfrey et al., 2005), but 

their effect on NK cells was not known. Therefore, the effects of CB and PB 

Treg cells on PB NK cell functions were assessed using an in vitro NK cell 

cytotoxicity assay adapted from Ghiringhelli and colleagues (Ghiringhelli et al., 

2005). Freshly isolated autologous and allogeneic CB and PB Treg cells were 

cultured at a ratio of 1:1 and 1:4 with PB NK cells for 4 h without cytokines. The 

effect of Treg cells on NK cell cytotoxicity was measured by assessing the 

capacity of NK cells to kill K562 cells in the presence or absence of Treg cells.  

 

A reduction in NK cell killing of K562 cells was observed when autologous and 

allogeneic PB Treg cells were co-cultured with PB NK cells (~40% at both 

ratios; 1:1 and 1:4) (Figure 4.1A-B). However, statistical significance was only 

detected when autologous PB Treg cells were cultured with PB NK cells at a 1:1 

ratio (p=0.03). These results are similar to those reported by Ghiringhelli and 

colleagues (Ghiringhelli et al., 2005) with the exception that in the present study 

no significant difference was observed when PB Treg cells were co-cultured 

with PB NK cells at a 1:4 ratio. This could be explained by the high variability 

between Treg samples used in this study, as Treg cells from one sample had 

no effect on the specific NK cell lysis of K562 cells, whereas Treg cells from the 

other three samples inhibited NK cell function by 20-40%. In contrast to PB Treg 

cells, allogeneic CB Treg cells were unable to suppress PB NK cells at any of 

the ratios tested under the experimental conditions used (Figure 4.1A-B). 
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Figure 4.1: Inhibition of PB NK cell cytolytic activity by PB Treg cells but not by CB Treg 
cells in vitro. (A) Freshly isolated PB NK cells were incubated alone or in the presence of 
autologous or allogeneic CB or PB Treg cells at 1:1 or 1:4 ratios (Treg cells:NK cells) for 4 h 
before incubation with 

51
Cr-labelled K562 cells at a 10:1 effector:target (E:T) ratio (x-axis). No 

cytokines were added to these cultures. (B) Normalisation of % specific lysis to PB NK cell 
response. The bars represent medians of 3-6 independent experiments. 

4.3 Effect of resting and TCR-stimulated umbilical cord 
blood regulatory T cells on resting umbilical cord 
blood natural killer cells 

Given that CB Treg cells require prior stimulation with IL-2 to be functional (Li et 

al., 2005), CB Treg cell-mediated suppression of CB NK cell functions was 

assessed in the presence of IL-2 using a combination of different assays. These 

included assessment of NK cell natural cytotoxicity by chromium release assay, 

viability, expression of activating receptors and adhesion markers required for 

NK cell killing, proliferation and IFN-γ secretion. In these experiments, the 

concentration of IL-2 used caused no significant Treg cell or NK cell activation 

but was essential for the survival and proliferation of CB cells.  

4.3.1 Natural killer cell natural cytotoxicity 

Natural cytotoxicity of CB NK cells was assessed by measuring lysis of K562 

cells in the presence of IL-2. Resting CB NK cells were cultured in the presence 

or absence of resting or TCR-stimulated Treg cells (autologous or allogeneic) 

for 24 (referred to as resting Treg cell:NK cell co-cultures) or 48 h (referred to as 

TCR-stimulated Treg cell:NK cell co-cultures) in the presence of 1 000 IU/ml IL-

2 at a 1:4 ratio (Treg cells:NK cells). TCR-stimulation of CB Treg cells was 

achieved by the addition of plate bound anti-CD3/soluble anti-CD28, hereafter 
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referred to as “TCR-stimulated Treg cells” in this chapter. Controls (NK cells in 

the absence of Treg cells) were treated the same as other cultures to ensure 

that plate bound anti-CD3 had no effect on resting CB NK cells. K562 cells 

(targets) were co-cultured with NK cells at E:T ratios as indicated. 

 

No significant suppression of NK cell natural cytotoxicity by resting or TCR-

stimulated Treg cells was observed in the presence of exogenous IL-2 (Figure 

4.2). A similar level of K562 lysis by resting NK cells was observed in the 

presence or absence of autologous or allogeneic resting Treg cells (Figure 

4.2A.1, A.2). The specific lysis mediated by resting NK cells ranged between 5 

and 15% for all ratios tested (1:1, 5:1 and 10:1 E:T ratio). Treg cell numbers 

were maintained constant with a ratio of 1:4 Treg cells:NK cells. Consistently, 

similar results were observed when TCR-stimulated CB Treg cells were co-

cultured in the presence of IL-2 (Figure 4.2B1, B.2). Collectively, for all 

conditions and ratios tested (resting NK cells ± autologous or allogeneic Treg 

cells), no statistically significant difference in NK cell lysis of K562 cells was 

observed between the different groups. In line with previous studies by 

Ghiringhelli and colleagues, it appears as though the presence of exogenous 

IL-2 overrides the ability of CB Treg cells to suppress NK cell function 

(Ghiringhelli et al., 2005).  

 

However, it is noteworthy that the killing capacity of CB NK cells was relatively 

low in four out of six of these experiments (up to 15% at the highest E:T ratio; 

10:1). This may suggest that activated CB NK cells should be used instead of 

resting CB NK cells for these experiments.  
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!
Figure 4.2: CB Treg cells do not suppress NK cell natural cytotoxicity in the presence of 
IL-2. Percent specific lysis of K562 cells by NK cells (alone: black) at different E:T ratios in the 
presence or absence of autologous or allogeneic CB Treg cells. CB NK cells were cultured with 
resting CB Treg cells (1 000 IU/ml IL-2) (A.1-A.2) or TCR-stimulated CB Treg cells (plate bound 
anti-CD3/soluble anti-CD28 and 1 000 IU/ml IL-2) (B.1-B.2) for 24 or 48 h prior to the assay. 
Percentage of maximal response was measured relative to NK cells alone as controls. The lines 
represent the medians of 3-4 independent experiments.  

!

4.3.2 Natural killer cell viability 

Several authors have reported the ability of TCR-stimulated Treg cells to kill 

autologous cells through perforin and granzyme in humans and in mice 

(Grossman et al., 2004a, Gondek et al., 2005, Zhao et al., 2006, Daniel et al., 

2013). Furthermore, Cao and colleagues (Cao et al., 2007) observed in a 

tumour mouse model that Treg cells promote tumour escape by the lysis of 

autologous NK cells and CD8+ T cells. However, it is not known whether CB 

Treg cells can also lyse autologous CB NK cells. To evaluate this, NK cells 

were cultured in the presence or absence of resting or TCR-stimulated Treg 

cells (autologous or allogeneic) at a 1:4 ratio (Treg cells:NK cells) with 

exogenous IL-2. NK cell viability was assessed using 7-AAD and Annexin V by 

flow cytometry. The gating strategy used is described in Section 2.7.1.1.  
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Resting or TCR-stimulated CB Treg cells (autologous and allogeneic) had no 

effect on NK cell viability when compared to NK cells alone (Figure 4.3A-B), 

suggesting that under these conditions (i.e. in the presence of IL-2) CB Treg 

cells do not impair CB NK cell viability.  

 

 
Figure 4.3: Viability of resting NK cells following co-culture with IL-2 and Treg cells. CB 
NK cell viability was assessed by flow cytometry using CD56, 7-AAD and Annexin V. Resting 
CB NK cells were co-cultured with resting CB Treg cells (A) or plate bound anti-CD3/soluble 
anti-CD28 TCR-stimulated CB Treg cells (B). A ratio of 1:4 (Treg cell:NK cells) was used. 
Autologous and allogeneic CB Treg cells were analysed in both conditions. Co-cultures were 
performed for 24 or 48 h in the presence of 1 000 IU/ml IL-2. The lines represent the medians. 
n=3-9. 

!

4.3.3 Expression of receptors involved in natural killer cell killing 
capacity  

4.3.3.1 Activating and inhibitory receptors 

The integration of signals provided by activating and inhibitory receptors upon 

the detection of infected cells or tumours determines NK cell function (Pegram 

et al., 2011). Hence, changes in the expression of these receptors may cause 

impairment of NK cell effector functions, as observed in individuals with prostate 

cancer (Wu et al., 2004) and colon carcinoma (Doubrovina et al., 2003). 

Importantly, several authors have demonstrated downregulation of the 

activating receptors NKG2D and NKp44 on NK cells in the presence of Treg 

cells in humans and mice (Ghiringhelli et al., 2005, Bergmann et al., 2011). 

Therefore, the ability of CB Treg cells to regulate the expression of the following 
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activating receptors involved in NK cell killing capacity was assessed: CD16 (a 

mediator of ADCC (Lanier et al., 1988)); DNAM-1 (involved in lysis of tumour 

cells and infected cells, necessary for actin cytoskeletal rearrangement and 

critical for NK cell function (Gilfillan et al., 2008)); NKG2D (critical for the 

response to cellular stress (Raulet, 2003)); NKp30 (implicated in NK cell-

mediated apoptosis and killing of immature DCs (Ferlazzo et al., 2002, Byrd et 

al., 2007)); NKp46 (facilitates NK cell lysis of infected cells (Bottino et al., 

2000)); and 2B4 (co-receptor and CD2 family member that also plays a role as 

an inhibitory receptor (Sivori et al., 2000)).  

 

Resting or TCR-stimulated CB Treg cells (autologous or allogeneic) were added 

to CB NK cells at a 1:4 ratio (Treg cells:NK cells) and receptor expression was 

analysed by flow cytometry after 0, 4 and 24 h co-culture. When resting NK 

cells were co-cultured with resting CB Treg cells (autologous or allogeneic), a 

reduced expression of CD16 (Figure 4.4A.1), NKp46 (Figure 4.4C.1), DNAM-1 

(Figure 4.5B.1), NKG2D (Figure 4.5A.1) and NKp30 (Figure 4.4B.1) was 

noted on NK cells, whereas no effect was observed on the expression of 2B4 

(Figure 4.5C.1). In addition, CD16 (Figure 4.4A.1) was significantly 

downregulated by 75% on resting NK cells (p=0.03) after 4 h co-culture with 

resting allogeneic Treg cells, while a non-significant trend towards reduced 

CD16 expression was observed in co-cultures with resting autologous Treg 

cells (~75%; p=0.06). However, CD16 expression on NK cells recovered after 

24 h, thus suggesting a transient Treg cell effect. NKp46 was also 

downregulated on NK cells (Figure 4.4C.1) when co-cultured with resting 

allogeneic (p=0.002) or autologous (p=0.002) Treg cells for 4 h, however the 

effect was lost after 24 h co-culture (autologous p=0.09, allogeneic p=0.04).  
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Figure 4.4: NK cell expression of CD16, NKp30 and NKp46 when co-cultured with IL-2 
and Treg cells. Flow cytometric analysis of CD16 expression (A.1-A.2), NKp30 expression 
(B.1-B.2) and NKp46 expression (C.1-C.2) on NK cells. All analysis was performed on gated 
CD56

+
 cells. Left panel: Resting CB NK cells with resting Treg cells; Right panel: Resting CB 

NK cells with TCR-stimulated CB Treg cells (plate bound anti-CD3/soluble anti-CD28). A ratio of 
1:4 (Treg cell:NK cells) was used. Co-cultures and controls were analysed at 0, 4 and 24 h in 
the presence of 1 000 IU/ml IL-2. The lines represent medians. n=3-9. 
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NKG2D expression was observed on resting CB NK cells in the co-cultures with 

autologous (p=0.01) or allogeneic (p=0.01) resting CB Treg cells after 4 h. 

NKG2D was further downregulated (~20%) on NK cells after 24 h co-culture in 

the presence of CB Treg cells (autologous p=0.04, allogeneic p=0.02). 

 

!
Figure 4.5: NK cell expression of NKG2D, DNAM-1 and 2B4 following co-culture with IL-2 
and Treg cells. Flow cytometric analysis of NKG2D expression (A.1-A.2), DNAM-1 expression 
(B.1-B.2) and 2B4 expression (C.1-C.2) on NK cells. All analysis was performed on gated 
CD56

+
 cells. Left panel: Resting CB NK cells with resting Treg cells; Right panel: Resting CB 

NK cells with plate bound anti-CD3/soluble anti-CD28 TCR-stimulated CB Treg cells. A ratio of 
1:4 (Treg cell:NK cells) was used. Co-cultures were analysed at 0, 4 and 24 h in the presence of 
1 000 IU/ml IL-2. n=3-9. 
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DNAM-1, CD16, NKp30 and NKp46, yet this effect seems to be transient, as no 

effect or reduced effects were observed after 24 h co-culture, except for 

NKG2D, which remained reduced on resting NK cells.  

4.3.3.2 LFA-1 expression 

The interaction of LFA-1 with its ligand intercellular adhesion molecule (ICAM-1) 

on target cells is required for NK cell cytotoxicity (Helander and Timonen, 1998). 

Importantly, the absence of this interaction, first observed in β-2 integrin-

deficient leukocyte adhesion deficiency patients (Timonen et al., 1988), and 

later observed using in vitro LFA-1 blocking assays in the context of viral 

infections (Barber et al., 2004), causes impaired NK cell cytotoxicity. 

 

Because of the importance of this adhesion molecule for NK cell functions, it 

was proposed that Treg cells suppress NK cells by inducing LFA-1 down-

regulation on NK cells. However, no effect was observed on the frequency of 

LFA-1+ NK cells (Figure 4.6A) or MFI for any of the conditions studied after 24 

h co-culture of NK cells with Treg cells (Figure 4.6B). This suggests that Treg 

cells do not impair the LFA-1 pathway. 

 

 

Figure 4.6: NK cell expression of LFA-1 when co-cultured in the presence or absence of 
CB Treg cells. Flow cytometric analysis of LFA-1 on NK cells. Frequency of expression (A) and 
MFI (B) on CD56

+
 gated cells in the presence or absence of resting or TCR-stimulated (plate 

bound anti-CD3/soluble anti-CD28) CB Treg cells (autologous or allogeneic) at a ratio of 1:4 
(Treg cells: NK cells) in the presence of 1 000 IU/ml IL-2. Co-cultures were analysed at 24 h. 
The lines represent medians. n=3-4. 
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4.3.4 Natural killer cell proliferation 

Increased proliferation of human NK cells in vitro has been observed following 

interaction of NK cells with autologous Tcon cells (CD4+CD25-Foxp3-) and 

plasmacytoid DCs; however this effect was completely abrogated by the 

addition of TCR-stimulated CD4+CD25high Treg cells (Romagnani et al., 2005). 

This suggests that Treg cells can indirectly control NK cell proliferation through 

suppression of CD4+ Tcon cells.  

 

Based on these findings and considering the presence of ~2.5% CD4+ Tcon 

cells in the co-culture system used in this study, the ability of CB Treg cells to 

suppress CB NK cell proliferation in a similar manner was evaluated. CB NK 

cells were labelled with CFSE, a fluorescent dye that halves in intensity at every 

cell division (Lyons and Parish, 1994). CFSE-labelled NK cells were then co-

cultured in the presence or absence of resting or TCR-stimulated CB Treg cells 

(autologous or allogeneic). Co-cultured cells were analysed by flow cytometry at 

0, 24, 48 and 96 h, when resting CB Treg cells were added, and at 0, 24 and 48 

h when TCR-stimulated CB Treg cells were added. TCR-stimulated Treg/NK 

cell co-cultures were not analysed at 96 h due to low cell numbers.   

 

Resting CB Treg cells (Figure 4.7A, C) and TCR-stimulated CB Treg cells 

(Figure 4.7B, D) had no effect on CB NK cell proliferation under any of the 

conditions tested. This might be due to the presence of exogenous IL-2 that 

could bypass Treg cell suppression or the fact that inhibition of NK cell 

proliferation by Treg cells could only be detected in co-cultures where NK cells, 

Tcon cells and Treg cells are present in the system (Romagnani et al., 2005), 

but not in co-cultures of NK cells with Treg cells in the absence of Tcon cells, as 

examined in this study. 
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!
Figure 4.7: NK cell proliferation in the presence or absence of CB Treg cells and 
exogenous IL-2. CB NK cell proliferation was assessed by flow cytometry at 0, 24, 48 and 96 h 
after co-culture using CFSE-labelled NK cells. Autologous and allogeneic CB Treg cells were 
added at a 1:4 ratio (Treg cell:NK cells) in the presence of 1 000 IU/ml IL-2 (for resting CB Treg 
cells) (A) or 1 000 IU/ml IL-2, plate bound anti-CD3 and soluble anti-CD28 (for TCR-stimulated 
Treg cells) (B). Data is representative of 4 independent experiments. (C and D) MFI at different 
time points for resting CB NK cells + resting CB Treg cells (C) or resting CB NK cells + TCR-
stimulated CB Treg cells (D). The lines represent medians. n=3-4. 
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4.3.5 Interferon-γ secretion 

Treg cell-mediated suppression of NK cells can also be assessed by measuring 

the secretion of cytokines such as IFN-γ. IFN-γ is secreted by NK cells upon 

interaction with pathogen-infected cells or following tumour recognition, and is 

involved in differentiation, proliferation and recruitment of other immune cells. 

Several authors have observed a decrease in IFN-γ production by NK cells in 

the presence of Treg cells (Trzonkowski et al., 2004, Ghiringhelli et al., 2005, 

Zhou et al., 2010, Bergmann et al., 2011), hence, it is plausible that CB Treg 

cells decrease CB NK cell-mediated IFN-γ secretion. In this study, resting or 

TCR-stimulated CB Treg cells (autologous or allogeneic) were cultured with CB 

NK cells for 24 h in the presence of IL-2 and then stimulated for 2 h with or 

without K562 cells at a 1:1 ratio or with PMA/ION as a positive control.  

 

Overall, resting or TCR-stimulated CB Treg cells did not affect NK cell-mediated 

IFN-γ production. Similar amounts of IFN-γ secretion by resting CB NK cells 

were observed when cultured alone or in the presence of resting CB Treg cells 

(0-300 pg/ml for unstimulated NK cells, ~300 pg/ml for K562 stimulated NK 

cells, ~3 500 pg/ml for PMA/ION stimulated NK cells) (Figure 4.8A). Likewise, 

no difference in IFN-γ secretion was observed when TCR-stimulated CB Treg 

cells were added to NK cell cultures (Figure 4.8B), which suggests that under 

these particular conditions, CB Treg cells are unable to impair IFN-γ secretion 

by NK cells.  
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Figure 4.8: IFN-γ secretion by NK cells in the presence or absence of CB Treg cells and 
exogenous IL-2. CB NK cells were cultured in the presence or absence of resting Treg cells (A) 
or TCR-stimulated CB Treg cells (B) and 1 000 IU/ml IL-2 at a 1:4 ratio (Treg cells:NK cells). For 
TCR-stimulation, Treg cells were incubated with plate bound anti-CD3/soluble anti-CD28. After 
24 h co-culture, cells were incubated with or without K562 cells (1:1 ratio; NK cells:K562 cells), 
or PMA/ION for 2 h. Supernatants were collected and IFN-γ secretion analysed by ELISA. The 
lines represent medians. n=3-4. 

4.4 Effect of resting or TCR-stimulated umbilical cord 
blood regulatory T cells on activated umbilical cord 
blood natural killer cells 

In the previous section, the inability of freshly isolated CB Treg cells to suppress 

resting PB NK cell functions as compared to PB Treg cells was demonstrated. 

This could be explained by the immature phenotype of CB Treg cells and/or a 

requirement for IL-2 for them to suppress (Godfrey et al., 2005). The data 

presented shows that in the presence of IL-2, CB Treg cells, regardless of their 

activation state, do not impair effector functions of resting NK cells. These 

observations suggest that either IL-2 allows NK cells to bypass suppression by 

CB Treg cells, as observed for PB Treg cells by Ghiringhelli and colleagues 

(Ghiringhelli et al., 2005), or that CB NK cell activation may be a requirement for 

CB Treg cell-mediated suppression as it has been observed that resting CB NK 

cells exhibit an immature phenotype (Luevano et al., 2012a). Therefore, the 

effect of CB Treg cells on activated NK cell functions in the absence of 

cytokines was investigated.    

 

To evaluate this, an optimised CB NK cell activation protocol was first required. 
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differentiation, proliferation, activation and function (Cooper et al., 2002, Gracie 

et al., 2003, Becknell and Caligiuri, 2005). In order to determine which cytokine 

optimally activates CB NK cells, a comparative study of these four cytokines 

was performed whereby CB NK cell function and activation was measured by 

chromium release assay and flow cytometry respectively. Concentration of 

cytokines and incubation times were chosen according to published data for PB 

NK cells except for IL-2, in which data for CB NK cells was available (Condiotti 

et al., 2001, Luevano et al., 2012a) (Table 4.1). 

 

Table 4.1: Published cytokine concentrations and incubation times used for NK cell 
activation with IL-2, IL-12, IL-15, and IL-18. 

Cytokine Concentration  Time of incubation (h) Reference 

IL-2 1 000 IU/ml  120 h (Condiotti et al., 2001, Luevano et 

al., 2012a) 

IL-12 10 ng/ml 40 h (Cooper et al., 2001b) 

IL-15 20 ng/ml 120 h (Chiossone et al., 2007) 

IL-18 100 ng/ml 40 h (Agaugue et al., 2008) 

 

Among the four cytokines tested, treatment of CB NK cells with IL-15 induced 

the highest NK cell cytotoxicity against K562 cells reaching levels of ~40% 

killing for all ratios tested at 40 h (Figure 4.9A) and 120 h (Figure 4.9B). The 

levels of cytotoxicity observed were three-fold higher than those observed for 

resting CB NK cells in Section 4.3.1.  

 

To further investigate the effect of IL-15 on CB NK cells after 40 h incubation, 

NK cell activation was assessed by measuring the expression of the early 

activation marker CD69 and of NKp44, exclusively expressed upon NK cell 

activation (Borrego et al., 1993, Vitale et al., 1998). After 40 h IL-15 treatment, 

95-100% of NK cells expressed both surface markers (Figure 4.10B). The 40 h 

time point was selected as it allows evaluation of Treg cell/NK cell co-cultures 

with autologous TCR-stimulated CB Treg cells, as both NK cells and Treg cells 

can be isolated from the same CB sample and activated simultaneously prior to 

co-culture. Hence, NK cells were activated with 20 ng/ml IL-15 for 40 h and are 

referred to here as “activated NK cells”.  
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Figure 4.9: Cytolytic activity of CB NK cells activated with IL-2, IL-12, IL-15 or IL-18. CB 
NK cells were activated with 1 000 IU/ml IL-2, 20 ng/ml IL-15, 10 ng/ml IL-12 or 100 ng/ml IL-18 
for 40 h (all cytokines) (A), and 40 and 120 h (IL-2 and IL-15) (B). NK cells were cultured with 
51

Cr-labelled K562 cells at different E:T ratios for 4 h. Results are represented as means of 
triplicate wells. Percentage of specific lysis was determined by the following equation: % lysis= 
[(experimental release - spontaneous release)/(maximum release - spontaneous release)]*100. 
n=4. 

!

 

Figure 4.10: Expression of CD69 and NKp44 on IL-15 activated NK cells. CD69 and NKp44 
expression was analysed by flow cytometry after 40 h incubation with 20 ng/ml IL-15. (A) 
Unstained CB NK cells after 40 h of IL-15 activation. (B) Expression of CD69 and NKp44 on CB 
NK cells after 40 h IL-15 activation. Data is representative of 10 independent experiments. 
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4.4.1 Natural killer cell natural cytotoxicity  

4.4.1.1  In vitro cytolytic activity 

To test whether CB Treg cells have an effect on the cytotoxicity of activated CB 

NK cells chromium release assays were performed. NK cells and resting or 

TCR-stimulated Treg cells (autologous or allogeneic) were cultured separately 

for 40 h. NK cells were activated with 20 ng/ml IL-15, whereas resting and TCR-

stimulated CB Treg cells were activated with 1 000 IU/ml IL-2 or 1 000 IU/ml IL-
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2 + plate bound anti-CD3/soluble anti-CD28 respectively. Subsequently, resting 

or TCR-stimulated CB Treg cells were washed and co-cultured with NK cells at 

a 1:1 or 1:4 ratios for 4 h in the absence of cytokines. Killing of K562 cells by 

NK cells from these co-cultures was then assessed by chromium release assay. 

 

Resting allogeneic CB Treg cells reduced NK cell cytotoxicity by ~20% at a ratio 

of 1:1 (Figure 4.11A.1,A.2), whereas NK cell cytotoxicity was not affected when 

the Treg:NK cell ratio was of 1:4, suggesting that high numbers of resting Treg 

cells are required for suppression to occur. Furthermore, no consistent effect 

was observed when autologous resting CB Treg cells were added to activated 

CB NK cells at any ratio tested, as only one out of three samples exhibited Treg 

cell-mediated suppression.  

!
Figure 4.11: Suppression of IL-15 activated NK cell cytotoxicity by resting or TCR-
stimulated CB Treg cells. CB NK cells and CB Treg cells were activated separately for 40 h, 
washed and co-cultured at different ratios (x-axis) for 4 h with 

51
Cr-labelled K562 cells at a fixed 

E:T ratio of 10:1. CB NK cells were activated with 20 ng/ml IL-15. Autologous or allogeneic CB 
Treg cells were cultured with 1 000 IU/ml IL-2 (resting) or 1 000 IU/ml IL-2, plate bound anti-
CD3/soluble anti-CD28 (TCR-stimulated) (Protocol E). Data is presented as percent specific 
lysis or normalised to controls (NK cells only) for co-cultures with resting Treg cells (A.1, A.2) or 
TCR-stimulated Treg cells (B.1, B.2). Results of the chromium release assay are represented 
as means of triplicate wells. Percentage of specific lysis was calculated using the following 
equation: % lysis = [(experimental release-spontaneous release)/(maximum release-
spontaneous release)]*100. The values in the graphs represent the medians. n=4. 

Normalised chromium assay, t=4 hrs

40

60

80

100

120

CB Treg cells: NK cells

%
 M

a
x
. 
re

s
p
o
n
s
e
 

(r
e
la

ti
v
e
 t
o
 c

tr
l)

Pre-activated CB NK cells+resting Treg; t=4hrs.

1:1 1:4 0:1
0

20

40

60

80

100

CB Treg: CB NK

%
 S

p
e
c
if
ic

 l
y
s
is

 K
5
6
2

Normalised chromium assay, t=4 hrs

40

60

80

100

120

CB Treg cells: NK cells

%
 M

a
x
. 
re

s
p
o
n
s
e
 

(r
e
la

ti
v
e
 t
o
 c

tr
l)

A.1 A.2 

B.1 B.2 

NK cells NK+ Allogeneic TregNK + Autologous Treg

0:1 1:4 1:1 

0:1 1:4 1:1 

Pre-activated CB NK cells+activated Treg; t=4hrs.

1:1 1:4 0:1
0

20

40

60

80

100

CB Treg: CB NK

%
 S

p
e
c
if
ic

 l
y
s
is

 K
5
6
2 p=0.02

p=0.005



Chapter 4: Effect of umbilical cord blood regulatory T cells  
on natural killer cell phenotype and function 

! 139 

Conversely, both autologous and allogeneic TCR-stimulated CB Treg cells 

inhibited cytotoxicity of activated NK cells at a 1:1 ratio with ~19% (p=ns) and 

~30% reduction (p=0.02), respectively (Figure 4.11B.1,B.2). Furthermore, this 

effect was still observed when CB Treg cell numbers were reduced to a 1:4 ratio 

(~10% reduction for autologous CB Treg cells (p=ns) and ~20% reduction for 

allogeneic CB Treg cell co-cultures (p=0.005)). In summary, these results 

demonstrated that CB Treg cells require TCR-stimulation to exert suppression 

against NK cells.  

4.4.1.2  Degranulation assay 

The expression of CD107a (LAMP-1) by NK cells correlates with degranulation, 

as this protein is exclusively expressed when vesicle membranes fuse with the 

cell membrane to release cytolytic granules containing perforin and granzyme 

(Alter et al., 2004). TCR-stimulated Treg cells reduced NK cell cytotoxicity 

(Section 1.4.1.1), but whether or not Treg cells affect the number of 

degranulating NK cells was not known. As suppression of activated CB NK cells 

by TCR-stimulated but not resting Treg cells was observed, the following 

sections focus on TCR-stimulated Treg cells only.  

 

CD107a expression was assessed on activated NK cells previously cultured 

alone or in the presence of TCR-stimulated CB Treg cells (autologous and 

allogeneic) for 4 h in the absence of cytokines. NK cells were incubated with 

either K562 cells at a ratio of 1:1 or PMA/ION.  

 

A trend in reduction of CD107a expression by CB NK cells was detected for 

both autologous and allogeneic conditions when data was normalised to 

controls (NK cells only) (Figure 4.12A-B). Firstly, the addition of CB Treg cells 

to the NK cell cultures resulted in a decrease of background staining for 

CD107a. Activated NK cells co-cultured with autologous TCR-stimulated CB 

Treg cells showed a ~30% reduction in CD107a expression (relative to the 

controls; NK cells), whereas a ~70% reduction in CD107a expression on 

activated CB NK cells was observed when allogeneic TCR-stimulated Treg cells 

were present. Secondly, in the presence of K562 cells or PMA/ION stimulation, 
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activated NK cells were affected in the same manner showing 10-20% 

reduction in CD107a expression for both autologous and allogeneic conditions, 

relative to the controls (NK cell alone). However none of these differences were 

statistically significant.  

!
Figure 4.12: CD107a expression on IL-15 activated CB NK cells in the presence of TCR-
stimulated CB Treg cells. IL-15 activated NK cells were cultured with TCR-stimulated Treg 
cells at 1:4 ratio (Treg cell:NK cells) for 4 h (Protocol E), and then incubated with or without 
K562 cells (1:1 ratio) or PMA/ION for 2 h. Cells were analysed by flow cytometry for the 
expression of CD107a on NK cells. (A) Percentage of CD56

+
 cells expressing CD107a in 

response to different stimuli. (B) Normalised data to controls (NK cells alone). The lines 
represent medians. n=3-4.  

!

4.4.2 Natural killer cell and regulatory T cell viability 

As previously mentioned, TCR-stimulated Treg cells are able to kill autologous 

cells, including NK cells, through perforin and granzyme (Grossman et al., 

2004a, Gondek et al., 2005, Zhao et al., 2006, Daniel et al., 2013) Therefore, 

the viability of activated NK cells, in the presence or absence of TCR-stimulated 

CB Treg cells (autologous or allogeneic) was assessed using 7-AAD and 

Annexin V, as described in Section 2.7.1.1.  

 

In the 4 h co-cultures, the viability of activated NK cells remained constant 

showing similar levels of live (~20%), early apoptotic (~40%) and late apoptotic 

(~40%) cell populations in both controls (activated CB NK cells only) or co-

cultures (activated CB NK cells + autologous or allogeneic TCR-stimulated CB 

Treg cells) (Figure 4.13). This suggests that under the conditions tested no 
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impairment in viability of activated NK cells by TCR-stimulated Treg cells is 

detected.  

  

!
Figure 4.13: Viability of IL-15 activated NK cells cultured with or without autologous or 
allogeneic Treg cells. IL-15 activated NK cells were cultured with TCR-stimulated CB Treg 
cells (plate bound anti-CD3/soluble anti-CD28), either autologous or allogeneic, at 1:4 ratio 
(Treg cell:NK cells) for 4 h (Protocol E). NK cell viability was assessed by flow cytometry using 
7-AAD and Annexin V on CD56

+
 gated cells. The lines represent the medians. n=3-6. 

!

4.4.3 Expression of receptors involved in natural killer cell killing 
capacity 

4.4.3.1  Activating and inhibitory receptors 

Upregulation of the transmembrane receptor NKG2D on NK cells following 

contact with Tcon cells or in vitro expanded Treg (iTreg) cells can be abrogated 

by the addition of Treg cells (Bergmann et al., 2011). Therefore, the ability of 

TCR-stimulated Treg cells to directly downregulate activating receptors involved 

in NK cell killing was assessed as described in Section 4.3.3. CB NK cells and 

CB Treg cells (autologous or allogeneic) were activated separately, washed and 

co-cultured in the absence of cytokines for 4 h. The expression of CD16, 

NKp30, DNAM-1, NKG2D, 2B4 and NKp46 on NK cells was analysed by flow 

cytometry. TCR-stimulated Treg cells (autologous and allogeneic) did not affect 

expression (Figure 4.14A) or MFI (Figure 4.14B) of any of the surface makers 

studied. 
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!
Figure 4.14: Expression of receptors involved in NK cell killing capacity on IL-15 
activated NK cells in the presence of TCR-stimulated Treg cells. IL-15 activated NK cells 
were cultured with autologous or allogeneic TCR-stimulated Treg cells (plate bound anti-
CD3/soluble anti-CD28) at a 1:4 ratio (Treg cell:NK cells) for 4 h (Protocol E). The expression of 
CD16, NKp30, NKp46, NKG2D, DNAM-1 and 2B4 on NK cells (gated on CD56

+
 cells) was 

assessed by flow cytometry. The data is shown as percentage of NK cells expressing the 
corresponding receptors (A) and MFI (B). The lines represent medians. n=4  

!

4.4.3.2  LFA-1 expression 

As previously mentioned, the interaction of LFA-1 with ICAM-1 on target cells is 

required for NK cell cytotoxicity (Helander and Timonen, 1998, Barber et al., 

2004). CB NK cells and CB Treg cells (autologous or allogeneic) were activated 

separately, washed and co-cultured in the absence of cytokines. After 4 h, the 

expression of LFA-1 on NK cells was assessed by flow cytometry. Similarly to 

the results observed when using resting CB NK cells co-cultured with CB Treg 

cells, LFA-1 expression (Figure 4.15A) and MFI (Figure 4.15B) on activated 
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CB NK cells was not affected when co-cultured with TCR-stimulated CB Treg 

cells (autologous or allogeneic) in the absence of cytokines.  

!
Figure 4.15: LFA-1 expression on NK cells after IL-15 activation when co-cultured with 
TCR-stimulated Treg cells. Flow cytometric analysis of LFA-1 on NK cells (gated on CD56

+
 

cells) in the presence or absence of TCR-stimulated CB Treg cells (autologous or allogeneic) at 
a ratio of 1:4 (Treg cells:NK cells). Co-cultures were analysed at 4 h in the absence of 
exogenous cytokines (Protocol E). The data is shown as percentage of NK cells expressing 
LFA-1 (A) and MFI (B). The lines represent medians. n=3-4. 

!

4.4.4 Natural killer cell proliferation 

As previously mentioned, increased proliferation of NK cells in vitro has been 

observed when NK cells interact with autologous Tcon cells (CD4+CD25-Foxp3-) 

and plasmacytoid DCs in humans (Romagnani et al., 2005); however this effect 

was completely abrogated with the addition of TCR-stimulated CD4+CD25high 

Treg cells. The data shown in Section 4.3.4 demonstrated no effect on the 

proliferation of resting NK cells when cultured with either resting or TCR-

stimulated CB Treg cells. Here, it was evaluated whether proliferation of 

activated CB NK cells could be affected by the presence of TCR-stimulated CB 

Treg cells.  

 

To detect differences in NK cell proliferation, CB NK cells were activated with 20 

ng/ml IL-15 for 40 h, CFSE labelled and then co-cultured for 4 h with autologous 

or allogeneic TCR-stimulated CB Treg cells. CB NK cell proliferation was 

assessed by flow cytometry at 0, 4 and 24 h after labelling. No differences were 

observed between NK cells alone or NK cells co-cultured with autologous or 

allogeneic TCR-stimulated CB Treg cells (Figure 4.16). Overall, these results 
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suggest that Treg cells require the presence of CD4+ Tcon cells and/or DCs to 

decrease NK cell proliferation. 

 

!
Figure 4.16: Proliferation of IL-15 activated NK cells in the presence of TCR-stimulated 
CB Treg cells. IL-15 activated NK cells were cultured with autologous or allogeneic pre-
stimulated Treg cells (plate bound anti-CD3/soluble anti-CD28) at a 1:4 ratio (Treg cell:NK cells) 
for 4 h (Protocol E). CB NK cell proliferation was assessed by flow cytometry using CFSE-
labelled NK cells at 0, 4 and 24 h after co-culture and data is presented as MFI values. The 
lines represent the medians. n=3-4.  

4.4.5 Interferon-γ secretion 

In Section 4.3.5, the inability of CB Treg cells to impair IFN-γ secretion by NK 

cells in the presence of IL-2, regardless of their stimulation state, was shown. 

Hence, the ability of TCR-stimulated CB Treg cells to impair IFN-γ secretion by 

activated CB NK cells in the absence of IL-2 was assessed. In this study, TCR-

stimulated CB Treg cells (autologous or allogeneic) were cultured with activated 

CB NK cells for 4 h and stimulated for 2 h with or without K562 cells at a 1:1 

ratio or with PMA/ION. 

 

TCR-stimulated CB Treg cells augmented IFN-γ secretion by activated NK cells 

in the absence of cytokines (Figure 4.17). When activated CB NK cells were 

stimulated with K562 cells, secretion levels of IFN-γ were increased by two-fold 

in the presence of allogeneic TCR-stimulated CB Treg cells (p=0.05), but not 

with autologous TCR-stimulated CB Treg cells. Consistently, IFN-γ secretion by 

PMA/ION-stimulated CB NK cells was significantly different to controls (p=0.05) 
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when co-cultured with allogeneic TCR-stimulated CB Treg cells (~2 500 pg/ml 

and 10 000 pg/ml respectively). These findings suggest that CB Treg cells, 

regardless of their stimulation state, may increase IFN-γ secretion by activated 

NK cells. Notably, it seems that allogeneic CB TCR-stimulated Treg cells may 

enhance this effect.  

!
Figure 4.17: Effect of TCR-stimulated CB Treg cells on IFN-γ secretion by IL-15 activated 
NK cells. IFN-γ secretion by IL-15 activated NK cells cultured with autologous or allogeneic 
TCR-stimulated Treg cells (plate bound anti-CD3/soluble anti-CD28) at 1:4 ratio (Treg cell:NK 
cells) for 4 h (Protocol E), and then incubated with or without K562 cells (1:1 ratio) or PMA/ION 
for 2 h. Supernatants were analysed by ELISA. Results are represented as means of duplicate 
wells. The lines represent medians. n=4.  

4.5 Effect of umbilical cord blood natural killer cells on 
umbilical cord blood regulatory T cells 

The regulation of the adaptive immune response by activated NK cells has 

been reported after transplantation and in certain pathological conditions such 

as autoimmune diseases and with viral and bacterial infection (Crome et al., 

2013). NK cell-mediated control of proliferation or lysis of CD8+ and CD4+ T 

cells (including Treg cells) as a mechanism to control adaptive immune 

responses has been described in humans and mice (Brillard et al., 2007, Roy et 

al., 2008, Chin et al., 2010). Regulation of the T cell immune response by NK 

cells can be through cytokine production such as IFN-γ (Lee et al., 2009b), 

TNF-α (Nie et al., 2013) and IL-10 (Lee et al., 2009b), secretion of perforin 

(Bielekova et al., 2006) and/or engagement of activating receptors such as 

NKG2D and NKp46 (Roy et al., 2008, Noval Rivas et al., 2010), LFA-1 (Nielsen 
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et al., 2012) or the death receptor FAS (Noval Rivas et al., 2010). In particular, 

Roy and colleagues demonstrated that during infection with Mycobacterium 

tuberculosis NK cells could control the proliferation of TCR-stimulated pTreg 

cells in vitro but not of tTreg cells (Roy et al., 2008).  

 

To date, no information is available on the effect of CB NK cells on CB Treg 

cells in this context. For this reason, CB Treg cell viability, proliferation and 

expression of Fas in the presence of CB NK cells was assessed.  

4.5.1 Frequency and viability of umbilical cord blood regulatory T 
cells 

To evaluate whether CB NK cells could compromise CB Treg cell viability and 

frequency, autologous and allogeneic CB Treg cells were cultured with CB NK 

cells under different conditions (Table 4.2). Viability of both cell types was 

measured using 7-AAD and Annexin V by flow cytometry, as previously 

described in Section 2.7.1.1.  

 

Table 4.2: Culture conditions for NK and Treg cell co-cultures to measure cell viability. 
*NK cells or Treg cells cultured alone were used as controls in all conditions.  

Condition NK cells  
(pre-culture) 

Treg cells  
(pre-culture) 

Treg cell/NK cell co-
culture conditions* 

24 h resting N/A N/A 1 000 IU/ml IL-2 for 24 

h 

24 h together N/A N/A 1 000 IU/ml IL-2 + 
plate bound anti-

CD3/soluble anti-

CD28 for 24 h 

72 h together  N/A N/A 1 000 IU/ml IL-2 + 
plate bound anti-

CD3/soluble anti-

CD28 for 72 h 

24 h separated+24 
h together 

1 000 IU/ml IL-2  
for 24 h 

1 000 IU/ml IL-2 + 
plate bound anti-

CD3/soluble anti-

CD28 for 24 h 

1 000 IU/ml IL-2 + 
plate bound anti-

CD3/soluble anti-

CD28 for 24 h 

48 h separated+24 

h together 

1 000 IU/ml IL-2  

for 48 h 

1 000 IU/ml IL-2 + 

plate bound anti-

CD3/soluble anti-

CD28 for 48 h 

1 000 IU/ml IL-2 + 

plate bound anti-

CD3/soluble anti-

CD28 for 24 h 
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The frequencies of both cell types were identical to the controls in all studied 

conditions (Figure 4.18A-B), suggesting that there is no effect of CB NK cells 

on CB Treg cell frequency and vice-versa. However, Treg cell viability was 

considerably affected in the 72 h co-cultures with activated CB NK cells (72 h 

tog). The frequency of live TCR-stimulated CB Treg cells (Annexin V-/7-AAD- 

cells) decreased from ~70% to ~20% (Figure 4.18C) accompanied with an 

increase of ~2% to ~50% of late apoptotic cells (Annexin V+/7-AAD+ cells) 

(Figure 4.18G), whereas the proportion of early apoptotic TCR-stimulated CB 

Treg cells (Annexin V+/7-AAD- cells) remained relatively constant at ~30% 

(Figure 4.18E). Conversely, activated CB NK cell viability was not impaired at 

any time point (Figure 4.18D,F,H). Importantly, these results are in agreement 

with published data in humans and mice (Brillard et al., 2007, Roy et al., 2008), 

as only activated but not resting NK cells (either autologous or allogeneic) were 

able to affect TCR-stimulated CB Treg cell viability.  
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Figure 4.18: Frequency and viability of CB Treg cells and NK cells after co-culture in the 
presence of exogenous IL-2. Resting or TCR-stimulated CB Treg cells were cultured with CB 
NK cells in the presence of 1 000 IU/ml IL-2. Data is presented as CD4

+
 (A) and CD56

+
 (B) total 

cell percentages gated on lymphocytes. Viability was analysed by flow cytometry using CD4, 
CD56, 7-AAD and Annexin V. CD4

+
 (C) and CD56

+
 (D) live cell percentages are gated on 7-

AAD
-
AnnexinV

-
 cells. CD4

+
 (E) and CD56

+
 (F) early apoptotic percentages are gated on 7-AAD

-

AnnexinV
+
 cells. CD4

+
 (G) and CD56

+
 (H) late apoptotic percentages are gated on 7-

AAD
+
AnnexinV

+
 cells. The lines are represented as medians. n=3-9. Tog.: cultured together, 

sep: cultured separatelly, rest: resting. 

!
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4.5.2 Regulatory T cell proliferation 

Autologous activated NK cells are able to inhibit the conversion of CD4+ Tcon 

cells to pTreg cells in humans and mice under pathological conditions (Brillard 

et al., 2007, Roy et al., 2008); however no information is available on the effect 

of CB-derived NK cells on CB Treg cells. Hence, CFSE-labeled CB Treg cells 

were cultured in the presence of autologous or allogeneic CB NK cells upon 

TCR stimulation and treatment with exogenous IL-2. The proliferation of TCR-

stimulated Treg cells alone or in co-culture with NK cells was analysed by flow 

cytometry at 0, 24, 48 and 72 h and presented as MFI. CB NK cells did not 

affect CB Treg cell proliferation upon TCR stimulation (Figure 4.19), which is 

consistent with the results shown in Figure 4.19A; left panel. 

 

!
Figure 4.19: Effect of CB NK cells on CB Treg cell proliferation. CB Treg cells were CFSE-
labelled and cultured alone (black) or with autologous (red) or allogeneic (blue) CB NK cells in 
the presence of 1 000 IU/ml IL-2 and plate bound anti-CD3/soluble anti-CD28. Cells were 
analysed by flow cytometry at 0, 24, 48 and 72 h. Representative example of 4 independent 
experiments. 

!

4.5.3 Fas expression on regulatory T cells 

In view of the effect of autologous and allogeneic activated CB NK cells on the 

viability of TCR-stimulated CB Treg cells observed in this study, expression of 

the death receptor Fas (CD95) on CB Treg cells was determined, in line with 

data reported for CD4+ T cells (Noval Rivas et al., 2010). Fas expression was 

assessed by flow cytometry on resting and TCR-stimulated CB Treg cells at 0, 

24, 48 and 72 h.   
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Interestingly, Fas expression was reduced on both resting and TCR-stimulated 

Treg cells (Figure 4.20); however only resting CB Treg cells showed significant 

downregulation of Fas expression after 48 and 72 h culture (p48h,72h=0.02) 

(Figure 4.20A). Consistently, Fas MFI on resting CB Treg cells also decreased 

from ~60 arbitrary units (a.u.) to ~20 a.u. after 24, 48 and 72 h culture (p24h, 48h, 

72h=0.02) (Figure 4.20B). The fact that Fas expression is maintained on TCR-

stimulated CB Treg cells could explain their higher susceptibility to NK cell lysis 

as compared to resting CB Treg cells. However, further studies will need to be 

performed to (i) assess how NK cells are causing Treg cell lysis, (ii) to 

determine if Fas is the main cognate receptor that promotes Treg cell lysis, and 

(iii) to determine whether other molecules such as perforin and granzyme could 

also play a role in Treg cell lysis by NK cells.  

 

!
Figure 4.20: Fas expression on resting and TCR-stimulated CB Treg cells. CB Treg cells 
were cultured with 1 000 IU/ml IL-2 (resting) or 1 000 IU/ml IL-2 and plate bound anti-
CD3/soluble anti-CD28 (activated) and analysed by flow cytometry after 0, 24, 48 and 72 h 
culture. Data is presented as percentage of Fas (CD95

+
) cells (A) and MFI (B) from CB Treg 

cells gated on CD4
+
Foxp3

high
 cells. The lines are represented as medians. n=4.  
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4.6 Discussion 

The potential to use NK cells as an adoptive cell therapy for cancer has driven 

considerable investigation towards understanding the mechanisms of tolerance 

that prevent NK cell spontaneous activation. To date, there are several theories 

that explain NK cell tolerance or regulation of NK cell activation. Firstly, NK cell 

“education” occurs by control of the functional development of NK cells by MHC 

class I molecules. The engagement of inhibitory receptors on NK cells by self-

MHC class I molecules determines whether NK cells will be functional or 

whether they will become hyporesponsive following stimulation, thus being able 

to distinguish self from non-self. NK cell “education” has been explained by 

several models, the “licensing” model (Kim et al., 2005), the “arming/disarming” 

model (Fernandez et al., 2005, Joncker and Raulet, 2008), the “cis interaction” 

model (Doucey et al., 2004, Chalifour et al., 2009) and the “rheostat” model 

(Brodin et al., 2009, Joncker et al., 2009) as described in Section 1.3.2.3. 

Secondly, another process by which NK cell activation is regulated is referred to 

as NK cell priming. This process describes how NK cells require appropriate 

“priming” and “triggering” signals provided by cytokines or other cells to be fully 

functional (Lucas et al., 2007, North et al., 2007, Ganal et al., 2012). 

Furthermore, it has recently been proposed that Treg cells can also regulate NK 

cell activation through IL-2 (Gasteiger et al., 2013a, Gasteiger et al., 2013b, 

Sitrin et al., 2013). Under homeostatic conditions, Treg cells can limit the 

availability of IL-2 indirectly, via Tcon cell exhaustion, or directly by competition 

for soluble IL-2. However, under inflammatory conditions, it has been shown 

that NK cells upregulate CD25 and compete with Treg cells for IL-2 allowing NK 

cells to override Treg cell-mediated suppression during inflammation. 

 

No information is available on the effects of CB Treg cells on CB NK cell 

effector functions. As previously mentioned, PB Treg cell-mediated NK cell 

suppression requires three conditions: an adequate cell-to-cell ratio between 

Treg cells and NK cells, absence of cytokines and TCR-stimulation. In this 

study, the following conditions were assessed: two different cell ratios (1:1 and 
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1:4, NK cells:Treg cells), presence or absence of IL-2, resting or TCR-

stimulated Treg cells, and autologous or allogeneic conditions. 

 

In this chapter, the impact of Treg cells (resting or TCR-stimulated, autologous 

or allogeneic) on resting or activated NK cells was assessed by the analysis of 

NK cell functions: cytotoxicity, cytokine production, expression of activating 

receptors, viability and proliferation. A comparison of the presented results with 

the literature is shown in Table 4.3, followed by discussion of each NK cell 

function. 

 

Table 4.3: Comparison of the results presented in this study with existing published 
studies. Only reported studies that show direct suppression are presented.  

NK cell function PB studies (direct studies) This study (CB) 

Natural  

cytotoxicity 
• Inhibited by resting Treg 

cells (membrane-bound 

TGF-β) 

• Not inhibited if IL-2 present 

• Not inhibited when freshly 

isolated NK cells and resting 

Treg cells were used 

• Inhibited when activated NK 

cells and TCR-stimulated 

Treg cells were used in 

absence of IL-2 

• Not inhibited when resting 

NK cells and resting or TCR-

stimulated Treg cells were 
used in presence of IL-2 

Cytokine  

Production  

(IFN-γ) 

• Downregulated if IL-12 

present 

• Not downregulated if IL-

2/IL-15 present 

• Not downregulated on 

resting NK cells in the 

presence of resting Treg 
cells 

• Not downregulated on 

resting NK cells in the 

presence of resting or TCR-
stimulated Treg cells and in 

the presence of IL-2 

• Enhanced cytokine 

production by IL-15 activated 
NK cells in absence of IL-2 

Activating  

Receptors 
• NKG2D downregulated in 

the presence of resting 

Treg cells 

• NKG2D, DNAM-1, NKp30 

and NKp46 and CD16 

downregulated on NK cells 
in the presence of resting 

CB Treg cells  

LFA-1 • N/D • No effect 

Viability • N/D (only studies in vivo) • No effect  

Proliferation • N/D (only studies with 

Tcon cells and APCs) 

• No effect  
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Because of the findings of Ghiringhelli and colleagues who show that resting PB 

Treg cells inhibit PB NK cell effector functions, the ability of CB Treg cells to 

suppress CB NK cells in the same manner was assessed (Ghiringhelli et al., 

2005). In contrast to PB Treg cells, freshly isolated allogeneic CB Treg cells 

failed to suppress PB NK cells in the absence of cytokines. This could be due to 

the immaturity of Treg cells, which require IL-2 stimulation to be functional 

(Godfrey et al., 2005). However, neither resting nor TCR-stimulated CB Treg 

cells abrogated resting CB NK cell functions in the presence of exogenous IL-2. 

This could be explained by the presence of IL-2 which may override Treg cell-

mediated suppression (Ghiringhelli et al., 2005) and/or the need for CB NK-cell 

activation, since CB NK cells have an immature phenotype (Luevano et al., 

2012a). Hence, a requirement for activation of CB NK cells and “steady state 

conditions” (i.e. no cytokines) was established. Another explanation for these 

differences could be that CB Treg cells exhibit different levels of expression of 

membrane-bound TGF-β as compared to PB Treg cells. Expression of 

membrane-bound TGF-β is the mechanism by which resting PB Treg cells 

suppress resting PB NK cells without the need for TCR-stimulation (Ghiringhelli 

et al., 2005), but this requires further investigation for CB Treg cells. 

 

TCR-stimulated CB Treg cells abrogated CB NK cell cytotoxicity in vitro, when 

NK cells were activated with IL-15. In line with these results, a decrease in the 

frequency of activated CB NK cells that degranulate when stimulated with K562 

cells or PMA/ION was also observed in the presence of TCR-stimulated CB 

Treg cells, but these observations showed no statistical significance. This might 

suggest that mature NK cells are more susceptible to Treg cell-mediated 

suppression, which is in agreement with the results from Sungur and 

colleagues, who observed a preferential expansion of licensed NK cells over 

unlicensed NK cells during infection with mouse CMV when Treg cells were 

depleted (Sungur et al., 2013). Based on the assumption that the degree of 

licensing correlates with NK cell maturation, it may be possible that Treg cells 

could selectively suppress specific NK cell subpopulations, however further 

experiments would be required to assess this concept.  
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Next, the ability of CB Treg cells to impair NK cell viability was assessed. 

According to what is reported in the literature, there is no clear evidence that 

Treg cells can lyse NK cells. While several authors have suggested NK cell 

(Cao et al., 2007), T cell (Grossman et al., 2004a) and B cell (Zhao et al., 2006) 

lysis by autologous TCR-stimulated Treg cells via perforin and/or granzyme A or 

B in mice, Balaji and colleagues suggest that cytotoxic cells such as CTL and 

NK cells are resistant to killing via perforin and granzyme due to the expression 

of cathepsin B, a mechanism that prevents self-destruction when degranulation 

occurs (Balaji et al., 2002). The data presented in this chapter support the 

argument of Balaji and colleagues since no effect on CB NK cell viability was 

observed for any of the conditions tested (i.e. activation status, allogeneic Treg 

cells, presence of cytokines). One explanation for this could be that CB Treg 

cells exhibit a different pattern of expression of granzyme A as compared to PB 

Treg cells. Thus it would be interesting to evaluate granzyme A expression by 

CB Treg cells as compared to PB Treg cells.  

!

The integration of signals provided by activating and inhibitory receptors upon 

detection of infected cells or tumours determines NK cell function (Pegram et 

al., 2011). Hence, changes in the expression of these receptors may cause 

impairment of NK cell effector functions, as observed in individuals with prostate 

(Wu et al., 2004) and colon (Doubrovina et al., 2003) carcinoma. For instance, 

upregulation of NKG2D and NKp44 on NK cells is observed when they are co-

cultured with CD4+ Tcon cells; however this effect is reverted by the addition of 

Treg cells (Bergmann et al., 2011), suggesting a potential regulation of NK cell 

activation by T cells. Furthermore, NKG2D downregulation on resting NK cells 

by PB Treg cells can also be detected in the absence of cytokines (Ghiringhelli 

et al., 2005).  

 

The results presented in this study are in line with what is reported by 

Ghiringhelli and colleagues, as downregulation of NKG2D, but also CD16, 

NKp30, NKp46 and DNAM-1 was detected on resting CB NK cells when co-

cultured with resting (allogeneic and autologous) CB Treg cells. However this 

effect seems to be transient as statistical significance decreased over the 

period studied. These observations can be explained by the previously 
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mentioned study from Ghiringhelli and colleagues, who observed similar results 

for resting PB cells and detected membrane-bound TGF-β as the main 

mechanism of suppression (Ghiringhelli et al., 2005). Hence, it would be 

interesting to further analyse the expression of membrane-bound TGF-β by 

resting CB Treg cells and perform blocking assays to further elucidate whether 

CB Treg cells use this mechanism to decrease the expression of the 

aforementioned NK cell receptors. Notably, TCR-stimulated CB Treg cells did 

not affect the phenotype of activated NK cells in the absence of cytokines. This 

could be accounted for the potential differences in expression of membrane-

bound TGF-β between resting and TCR-stimulated Treg cells as it has been 

described that resting Treg cells exhibit higher expression of membrane-bound 

TGF-β than TCR-stimulated Treg cells (Jonuleit and Schmitt, 2003). Another 

receptor that may have critical implications in NK cell degranulation is LFA-1; 

however, in this study the LFA-1 pathway was not impaired in NK cells following 

co-culture with Treg cells.  

 

As previously mentioned, human Treg cells can abrogate CD4+ Tcon cell-

mediated NK cell proliferation (Romagnani et al., 2005). Here, no impairment of 

NK cell proliferation in the co-cultures with CB Treg cells (autologous or 

allogeneic) was observed, regardless of their stimulation status and the 

presence of exogenous cytokines. A possible explanation for this might be that 

Treg cells only impair NK cell proliferation via CD4+ Tcon cells, which are barely 

present in this experimental system (<2.5% of total cells in co-culture). Thus, it 

would be interesting to assess whether CB Treg cells can inhibit NK cell 

proliferation in the presence of Tcon cells.  

 

Treg cell-mediated suppression of NK cells can also be assessed by the 

measurement of cytokine secretion such as IFN-γ. Several authors have 

observed a decrease in IFN-γ production by NK cells in the presence of Treg 

cells (Trzonkowski et al., 2004, Ghiringhelli et al., 2005, Zhou et al., 2010, 

Bergmann et al., 2011). Hence, it is plausible that CB Treg cells could also 

decrease IFN-γ secretion by CB NK cells. In this study, CB Treg cells 

(autologous or allogeneic) did not decrease NK cell-mediated IFN-γ secretion 

by resting CB Treg cells in presence of IL-2. However, an enhanced production 
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of IFN-γ by activated CB NK cells was detected when NK cells were cultured 

with TCR-stimulated CB Treg cells in the absence of IL-2. Notably, this is the 

only experiment in which a difference between the effects of autologous and 

allogeneic CB Treg cells on CB NK cells was observed suggesting that MHC 

mismatch may be involved in this effect. This may have therapeutic 

implications, for example in transplantation, as NK cell-mediated control of 

infections is crucial for overall survival (Gallez-Hawkins et al., 2011), but this 

requires further investigation.  

 

NK cells are able to lyse T cells under specific conditions, such as during viral 

infection, in autoimmune diseases and in the context of transplantation. During 

CMV infection in mice, NK cells can restrict T cell responses by killing infected T 

cells (Andrews et al., 2010). Furthermore, Roy and colleagues have 

demonstrated that human activated NK cells can lyse iTreg cells but not freshly 

isolated Treg cells in a model of Mycobacterium tuberculosis infection (Roy et 

al., 2008). To date, it was unknown whether CB NK cells can lyse CB Treg 

cells. The results presented in this study indicate that resting CB NK cells are 

unable to lyse resting CB Treg cells whereas IL-2 activated NK cells can 

severely compromise both autologous and allogeneic TCR-stimulated Treg cell 

viability in vitro. The reason why CB NK cells failed to kill CB Treg cells in less 

than 40 h can be explained by the observations presented in this study on CB 

NK cell activation with different cytokines, as IL-2 mediated activation of CB NK 

cells required longer times of activation (>40 h) for efficient killing capacity and 

activation (Luevano et al., 2012a).  

 

Furthermore, the expression of Fas (CD95) on TCR-stimulated CB Treg cells 

may suggest that Fas represents a mechanism of recognition of Treg cells by 

activated CB NK cells, as observed by Noval Rivas and colleagues (Noval 

Rivas et al., 2010). However, other molecules such as perforin and granzyme 

(Yamaji et al., 2012) could also play a role. Further studies such as blocking of 

Fas and analysis of perforin and granzyme expression in CB Treg cells in the 

presence of activated CB NK cells would need to be performed to fully elucidate 

how CB NK cells lyse TCR-stimulated CB Treg cells. These results may have 

therapeutic implications, particularly in HSCT, as NK cells activated by the 
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cytokine storm evident in most post-HSCT patients after radiotherapy, could 

compromise the persistence of adoptive Treg cells when used as a therapy to 

prevent GvHD.  

 

The data presented in this chapter demonstrates that TCR-stimulated CB Treg 

cells inhibit NK cell lysis in the absence of cytokines, whereas the presence of 

IL-2, crucial during inflammation, may revert this effect. Also, unlike PB Treg 

cells (Ghiringhelli et al., 2005), CB Treg cells require TCR-stimulation to impact 

on NK cell effector functions. Notably, TCR-stimulated CB Treg cells enhanced 

IFN-γ secretion but decreased NK cell cytotoxicity against K562 cells by 

activated NK cells. This finding may suggest that TCR-stimulated CB Treg cells 

have different effects on NK cell subpopulations, as CD56bright NK cells are 

primary NK cell cytokine producers whereas CD56dim NK cells are mostly 

cytotoxic (Lanier et al., 1989). However, further experiments with sorted NK cell 

subpopulations are required to prove this concept. Hence, the theory of NK cell 

regulation by IL-2 recently proposed by Kerdiles and colleagues may apply as 

well to CB Treg cell/NK cell interactions, as no effect was observed in the 

presence of IL-2; however further investigation is required to confirm this 

hypothesis. This study presents the optimal conditions under which both CB 

Treg cells and CB NK cells compromise each other’s functions, thus providing 

information for the optimisation of an adoptive CB Treg cell therapy.  
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5 Effect of umbilical cord blood 
regulatory T cells on natural 
killer cell differentiation 

5.1 Introduction 

Preclinical and clinical studies suggest that the use of Treg cells to prevent or 

modulate GvHD in transplanted patients is safe (Trzonkowski et al., 2009, 

Brunstein et al., 2011b, Di Ianni et al., 2011, Edinger and Hoffmann, 2011), but 

the potential impact of Treg cells on GvL and Graft versus Infection (GvI) is still 

controversial (Trenado, 2003, Maury et al., 2010, Brunstein et al., 2013). This is 

important because after CBT, NK cells are the first lymphocytes to reconstitute 

(Beziat et al., 2009) and for several months are the only effector cells that are 

present in the blood of transplanted patients that can provide GvL and GvI.  

 

Given that the clinical trials that assessed the use of Treg cells as a therapy for 

GvHD focused on clinical safety, limited data on the effects of Treg cells on 

immune reconstitution have been reported. For instance, Brunstein and 

colleagues assessed whether CB Treg cells can prevent GvHD in 23 double 

CBT patients and provide some evidence that Treg cells may impair GvI 

(Brunstein et al., 2011b). In this study, higher susceptibility to early viral 

reactivation was observed within 30 days after transplantation in Treg cell-

treated patients as compared to historical controls (Brunstein et al., 2013). In 



Chapter 5: Effect of umbilical cord blood regulatory T cells  
on natural killer cell differentiation 

! 159 

addition, Di Ianni and colleagues demonstrated that adoptive transfer of freshly 

isolated donor Treg cells counteracted the potential GvHD induced by 

megadoses of donor Tcon cells in 28 patients receiving a haploidentical graft. 

When compared to a cohort of 152 patients, Treg cell-treated patients exhibited 

higher immune reconstitution and improved immunity to opportunistic infections, 

thus suggesting that under these particular conditions, NK cells may not be 

impaired.  

 

Likewise, there is discrepancy in results obtained from preclinical studies that 

analysed the impact of Treg cells on GvL and immune responses to viral 

infections. For instance, Nguyen and colleagues observed that co-infusion of 

donor Treg cells with donor Tcon cells in a mouse model of GvHD after BMT 

enhanced immune reconstitution and GvI while preventing GvHD-induced 

damage to the thymus and SLT (Nguyen et al., 2007). However, whether 

adoptively transferred Treg cells can compromise NK cell-mediated GvL is still 

debatable. Whilst the clearance of A20 leukaemia cells (GvL effect) was 

observed in BM-transplanted Balb/c mice in the presence of recipient-

alloantigen-specific Treg cells, Treg cells compromised the GvL effect when a 

different mouse strain and a different tumour cell line was used (Trenado, 

2003). 

 

As Treg cells can suppress NK cell function in vitro (Ghiringhelli et al., 2005, 

Ralainirina et al., 2006) and in vivo (Sun et al., 2010, Zhou et al., 2010), it is 

possible that adoptive transfer of Treg cells could also impair NK cell 

differentiation in transplanted patients and thus severely compromise NK cell-

mediated GvL and GvI. This chapter aims to investigate whether CB Treg cells 

can impair NK cell differentiation in vitro and if so, to determine at which stages 

of NK cell differentiation and at what particular time point of NK cell 

differentiation this potential suppression occurs. 
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5.2 Effect of regulatory T cells on natural killer cell 
differentiation 

Only Romagnani and colleagues have studied the impact of Treg cells on 

numbers of mature NK cells in vitro (Romagnani et al., 2005). They observed 

increased proliferation of human PB NK cells following interaction with 

autologous Tcon cells (CD4+CD25-Foxp3-) and plasmacytoid DCs; however this 

effect was completely abrogated by the addition of TCR-stimulated 

CD4+CD25high Treg cells. Currently, no information is available on the effect of 

Treg cells on NK cell differentiation. To evaluate this effect, an established in 

vitro model of NK cell differentiation was used (Grzywacz et al., 2006) (Luevano 

et al., Plos One, under revision). This model consists of the culture of CB CD34+ 

HSC for 35 days in the presence of EL08.1D2 feeder layer cells and cytokines 

such as IL-3, IL-7, IL-15, SCF and Flt3 ligand to induce NK cell differentiation. 

This model is ideal to analyse the potential effects of CB Treg cells on NK cell 

differentiation as HSC only differentiate into NK cells (and no other cell type) 

under the conditions used in this system (Figure 5.1).  

 

Figure 5.1: Cell types present at day 35 of HSC cultures. Flow cytometric analysis of B cells 
(CD19

+
), NK cells (CD56

+
CD3

-
), T cells (CD3

+
) and monocytes (CD14

+
) at day 35 of HSC 

cultures. The lines represent medians. Cell counts were calculated from total cell numbers and 
the cell ratios determined by flow cytometry. n=8-12. 
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Allogeneic CB Treg cells, either resting or TCR-stimulated, were added at five 

key time points during HSC cultures where the transition from one differentiation 

stage to another occurs (Figure 5.2). TCR-stimulated CB Treg cells were 

activated with plate bound anti-CD3/soluble anti-CD28 and 1 000 IU/ml IL-2 for 

24 h and washed before addition to HSC cultures.  

 

 

Figure 5.2: Experimental design to assess a potential effect of Treg cells on HSC 
cultures. HSC ± resting or TCR-stimulated CB Treg cells were cultured in the presence of 
irradiated EL08.1D2 cells and cytokines for 35 days. CB Treg cells were added to HSC cultures 
at a ratio of 1:4 (Treg cells:NK cells), except when CB Treg cells were added at day 2, where a 
ratio of 1:1 was used. TCR-stimulated CB Treg cells were activated with plate bound anti-
CD3/soluble anti-CD28 and 1 000 IU/ml IL-2 for 24 h and washed before addition to HSC 
cultures. Figure adapted by permission from Macmillan publisher Ltd: [Cellular and Molecular 
Immunology] (Luevano et al., 2012b), copyright 2012.  

!

The impact of CB Treg cells on NK cell differentiation was assessed by 

measuring the total NK cell number at the end of HSC cultures at day 35, which 

was calculated from the NK cell frequency determined by flow cytometry and 

total cell number per well. It was found that resting CB Treg cells do not have an 

effect on NK cell numbers, regardless of the time point at which they were 

added. In addition, expansion rates in all resting Treg cell/HSC co-cultures were 

similar to HSC cultures (~300 000 NK cells; 600-fold to 1 000-fold expansion) 

(Figure 5.3A.1). However, when TCR-stimulated CB Treg cells were added, a 

significant reduction in NK cell numbers was observed, except when TCR-

stimulated CB Treg cells were added at day 2 of culture (Figure 5.3A.2). 
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Remarkably, the strongest effect was observed when TCR-stimulated CB Treg 

cells were added at day 9 of culture with 90% reduction in NK cell numbers 

observed at day 35 of culture (p=0.0006). This is the time point at which HSC 

commitment to the NK cell lineage occurs (Luevano et al., Plos One, under 

revision). Notably, the effect of TCR-stimulated Treg cells on NK cell numbers 

was reduced when Treg cells were added at later stages of NK cell 

differentiation and maturation. A 50% reduction in NK cell numbers was 

observed when TCR-stimulated CB Treg cells were added at day 16 of culture 

(p=0.0012) and a 40% reduction at days 23 (p=0.0025) and 30 (p=0.0480) of 

culture. 

 

Figure 5.3: Allogeneic TCR-stimulated CB Treg cells but not resting CB Treg cells inhibit 
NK cell differentiation from CD34

+
 cells. CD34

+
 cells were cultured in the presence or 

absence of allogeneic resting or TCR-stimulated CB Treg cells added at day 2, 9, 16, 23 or 30 
of HSC cultures at a ratio of 1:4 (Treg cells:HSC). Total NK cell count at day 35 of differentiation 
± resting CB Treg cells (A.1) or TCR-stimulated CB Treg cells (A.2). The lines represent 
medians. n=5-8. (B) Representative flow cytometric analysis of NK cells (CD56

+
) and Treg cells 

(CD4
+
) from all cultures at day 35 of differentiation. Cell numbers were calculated from the NK 

cell frequency determined by flow cytometry and total cell number per well. rTreg: resting CB 
Treg cells, sTreg: TCR-stimulated Treg cells.  
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derived from Treg cells that were added to the cultures at the indicated time 

points (Figure 5.3B).  

 

In all Treg cell/HSC co-cultures, only Treg cells and NK cells were observed, 

thus suggesting that CB Treg cells do not favour the differentiation of HSC into 

another cell lineage. Notably, it seems that TCR-stimulated CB Treg cells can 

respond to the cytokines present in the cultures and proliferate.  

5.3 Effect of regulatory T cells on viability of CD56
+
 

natural killer cells 

Several groups have reported that Treg cells can affect the viability of target 

cells such as T cells, B cells and more recently HSC (Grossman et al., 2004a, 

Zhao et al., 2006, Fujisaki et al., 2011). Therefore, it was next examined 

whether CB Treg cells could impair the viability of HSC in culture. Allogeneic 

resting or TCR-stimulated CB Treg cells were added at five key time points of 

HSC cultures (as described in Figure 5.1), and the viability of CD45+ cells, NK 

cells and Treg cells was analysed by flow cytometry using 7-AAD.  

 

A similar frequency of CD45+ viable cells was detected in control cultures and 

for HSC cultured in the presence of resting Treg cells (Figure 5.4A) or TCR-

stimulated CB Treg cells (Figure 5.4B) with an average of 90% live cells (7-

AAD- cells). Similarly, neither resting (Figure 5.5A) nor TCR-stimulated CB Treg 

cells (Figure 5.5B) affected NK cell viability, with all cultures showing similar 

percentages of viable NK cells to controls. 
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!
Figure 5.4: Viability of CD45

+
 cells in HSC cultures in the presence or absence of resting 

or TCR-stimulated CB Treg cells. Viability of CD45
+
 cells was assessed by flow cytometry 

using CD4, CD45 and 7-AAD. HSC were cultured in the presence or absence of allogeneic 
resting CB Treg cells (A) or TCR-stimulated CB Treg cells (B). Treg cells were added at key 
time points of differentiation. The lines represent medians. n=6-8. 

!

!
Figure 5.5: Viability of CD56

+
 cells in HSC cultures in the presence or absence of resting 

or TCR-stimulated CB Treg cells. NK
 
cell viability was assessed by flow cytometry using CD4, 

CD45, CD56 and 7-AAD. HSC were cultured in the presence or absence of allogeneic resting 
CB Treg cells (A) or TCR-stimulated CB Treg cells (B). The lines represent medians. n=3-6. 
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Imamichi and colleagues have suggested that IL-15 is a potent inducer of tTreg 

cell proliferation (Imamichi et al., 2008); however it is unknown whether CB Treg 

cells are able to persist and proliferate under the conditions used in this model 

of NK cell differentiation. Hence, resting or TCR-stimulated CB Treg cell viability 

was assessed in all cultures by flow cytometry using 7-AAD and by gating on 

CD4+ T cells. Resting (Figure 5.6A) and TCR-stimulated CB Treg cells (Figure 

5.6B) were viable at all time points of HSC cultures analysed. The frequency of 

viable resting CB Treg cells was more variable between samples than TCR-

stimulated CB Treg cells. 

!

!
Figure 5.6: Viability of CD4

+
 T cells in HSC cultures. Viability of CD4

+
 T cells was assessed 

by flow cytometry using CD4, CD45 and 7-AAD. HSC were cultured in the presence or absence 
of allogeneic resting CB Treg cells (A) or TCR-stimulated CB Treg cells (B). The lines represent 
medians. n=5-6. 
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5.4 Phenotypic analysis of natural killer cell 
differentiation in the presence of regulatory T cells 

5.4.1 NK cell differentiation stages 

Next, it was determined whether TCR-stimulated Treg cells inhibited NK cell 

differentiation at a specific developmental time point. To evaluate this, the 

model by Freud and Caligiuri was used. The model identified four 

developmental stages of NK differentiation from CD34+ HSC cells in human 

SLT based on the expression of CD3, CD34, CD117 and CD94 (Freud et al., 

2006). Pro-NK cells (stage 1)(CD3-CD34+CD117-CD94-) and pre-NK cells 

(stage 2)(CD3-CD34+CD117+CD94-) were present during the first fourteen days 

of differentiation, whereas iNK cells (stage 3)(CD3-CD34-CD117+CD94-) were 

detected after seven days of differentiation and CD56bright NK cells (stage 

4)(CD3-CD34-CD117+/-CD94+) after fourteen to 21 days of differentiation 

(Figure 5.7 and Figure 5.8).  Figure 5.7 shows the gating strategy and 

definitions of each stage from a representative sample. In this study, CD4 was 

used instead of CD3 to detect T cells as TCR-stimulation of Treg cells with plate 

bound anti-CD3 may induce CD3 downregulation making the detection of this 

marker technically difficult.  

 

!
Figure 5.7: Representative analysis of the stages of NK cell differentiation and 
maturation by flow cytometry. Flow cytometric analysis of the four stages of NK cell 
differentiation based on the expression of surface markers CD3, CD34, CD117 and CD94 at 
day 35, gated on CD45

+
 cells. Stages 1 and 2 were gated as CD3

-
CD94

-
CD34

+
CD117

-
 and 

CD3
-
CD94

-
CD34

+
CD117

+
, respectively (A-B). Stages 3 and 4 were gated as CD3

-
CD34

-

CD117
+
CD94

-
 and CD3

-
CD34

-
CD117

+
CD94

+
, respectively (C-D).  
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To analyse the impact of CB Treg cells on each NK cell differentiation stage, the 

total cell numbers of the four NK cell stages in the different HSC cultures with or 

without resting or TCR-stimulated CB Treg cells were analysed. When resting 

CB Treg cells were added at key time point during HSC cultures, no difference 

was detected in the total cell numbers of any of the NK cell stages analysed 

(Figure 5.8B.1, C.1, D.1, E.1 and Figure 5.9A). In contrast, TCR-stimulated CB 

Treg cells exerted different degrees of suppression on NK cell differentiation 

depending on the time point at which they were added to HSC cultures. When 

TCR-stimulated CB Treg cells were added at day 2 and 30 of HSC cultures, an 

effect on NK cell differentiation was not observed at any of the time points 

studied (Figure 5.8B.2). However, when TCR-stimulated CB Treg cells were 

added at day 9, there was a slight decrease in the number of pro-NK cells at 

day 14 (p=0.03) (Figure 5.8C.2), but this effect was lost during subsequent 

days of HSC cultures. In contrast, iNK cell numbers were reduced at day 21 

(p=0.03) (Figure 5.8D.2), at day 28 (p=0.01) (Figure 5.8E.2) and at day 35 

(p=0.0079) (Figure 5.9B). Likewise, total numbers of CD56bright NK cells were 

also reduced at days 28 (p=0.07) (Figure 5.8E.2) and 35 (p=0.0079) (Figure 

5.9B).  

 

When TCR-stimulated CB Treg cells were added at day 16, only significant 

reduction in the number of iNK cells (stage 3) was only noted at day 28 of 

culture (p=0.008) (Figure 5.8E.2). A reduction in the number of CD56bright NK 

cells was observed at day 35 of culture (p=0.0159) (Figure 5.9B). In addition, 

when TCR-stimulated CB Treg cells were added at day 23, a reduction in the 

number of CD56bright NK cells at day 35 was observed (p=0.0079) (Figure 

5.9B).  
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Figure 5.8: Assessment of the number of cells in each NK cell differentiation stage at 
days 0, 7, 14, 21 and 28 of HSC cultures. HSC were cultured in the presence or absence of 
allogeneic resting (left panels) or TCR-stimulated CB Treg cells (right panels) added at day 2, 9, 
16, 23 and 30 of HSC culture. Flow cytometric analysis of Stages 1-4 based on CD4, CD34, 
CD117 and CD94 expression at day 0 (A), 7 (B.1-2), 14 (C.1-2), 21 (D.1-2), and 28 (E.1-2). Cell 
numbers were calculated from the NK cell frequency determined by flow cytometry and total cell 
numbers per well. n=5-8. 
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!
Figure 5.9: Assessment of the number of cells in each NK cell differentiation stage at day 
35 of HSC cultures. HSC were cultured in the presence or absence of allogeneic resting (A) or 
TCR-stimulated (B) CB Treg cells added at day 2, 9, 16, 23 and 30 of HSC culture at a ratio of 
1:4 (Treg cells: HSC). Flow cytometric analysis of Stages 1-4 based on CD4, CD34, CD117 and 
CD94 expression at day 35 of NK cell differentiation. The lines represent medians. Cell 
numbers were calculated from the NK cell frequency determined by flow cytometry and total cell 
numbers per well. n=5-8. 

!

Figure 5.10 and Figure 5.11 illustrate total numbers of iNK cells and CD56bright 

NK cells throughout HSC cultures with or without TCR-stimulated CB Treg cells. 

TCR-stimulated CB Treg cells, when added at day 9, 16 and 23 of HSC 

cultures, decreased iNK cell numbers, with the strongest effect observed when 

added at day 9 (Figure 5.10; red line). The addition of TCR-stimulated CB Treg 

cells at this particular time point also led to a reduction in iNK cell numbers in 

the following days of HSC culture. Cell numbers were then constant for the rest 

of the HSC differentiation after day 9.  
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Figure 5.10: Total numbers of iNK cells in HSC cultures in the presence or absence of 
TCR-stimulated CB Treg cells. HSC were cultured in the presence or absence of allogeneic 
TCR-stimulated CB Treg cells at different time points at a ratio of 1:4 (Treg cells:HSC), except 
for day 2 where the ratio was 1:1. iNK cells were gated as CD4

-
CD34

-
CD117

+
CD94

- 
cells. Cell 

numbers were calculated from the NK cell frequency determined by flow cytometry and total cell 
numbers per well. The values represent medians. n=5-8.  

 

Likewise, total numbers of CD56bright NK cells were also reduced when TCR-

stimulated CB Treg cells were added at day 9, 16 and 23 of HSC cultures, with 

the strongest effect observed when TCR-stimulated CB Treg cells were added 

at day 9 (Figure 5.11).  

!
Figure 5.11: Total numbers of CD56

bright
 NK cells in HSC cultures in the presence or 

absence of TCR-stimulated CB Treg cells. HSC were cultured in the presence or absence of 
allogeneic TCR-stimulated CB Treg cells at different time points at a ratio of 1:4 (Treg cells: 
HSC), except for day 2 where the ratio was 1:1. CD56

bright
 NK cells were gated as CD3

-
CD34

-

CD117
+/-

CD94
+ 

cells. Total CD56
bright

 cell numbers were calculated from NK cell frequencies 
determined by flow cytometry and total cell numbers per well. The values represent medians. 
n=5-8. 
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To determine why TCR-stimulated CB Treg cells had the strongest impact when 

added at day 9 of HSC culture, the frequency of expression of each of the four 

stages of NK cell differentiation was measured. Between days 7 and 14, low 

frequencies of iNK cells and CD56bright NK cells were detected. It is therefore 

likely that the subsets of cells present at the time when TCR-stimulated CB Treg 

cells were added were the only cells detected at the end of HSC cultures. 

Collectively, these results suggest that TCR-stimulated CB Treg cells have a 

negative impact on NK cell differentiation, with the strongest effect observed on 

HSC commitment to the NK cell lineage.  

 

!
Figure 5.12: Frequency of cells in each NK cell differentiation stage in HSC cultures. HSC 
were differentiated for 35 days and frequencies of Stage 1-4 NK cells were assessed based on 
CD4, CD34, CD117 and CD94 expression at days 0, 7, 14, 21, 28 and 35. The values represent 
medians. n=11 

!

5.4.2 Expression of the natural killer cell maturation markers 
CD94 and CD16  

Based on the findings of Cooper and colleagues showing that PB CD56bright NK 

cells are CD94+CD16+/- and PB CD56dim NK cells are CD94+/-CD16+, and that 

CD56dim NK cells derive from CD56bright NK cells (Cooper et al., 2001a), Freud 

and Caligiuri reported a fifth stage of NK cell differentiation based on the 

expression of CD94 and CD16 by CD56+ NK cells (Freud and Caligiuri, 2006). 

Thus, it was investigated whether TCR-stimulated CB Treg cells could also 

impair these intermediate stages of NK cell differentiation. 
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To evaluate this, allogeneic resting or TCR-stimulated CB Treg cells were 

added at different time points of NK cell differentiation. Total cell counts for the 

three different intermediate stages defined as CD56+CD94-CD16-, 

CD56+CD94+CD16- and CD56+CD94+CD16+ were measured at each time point. 

The latter representing the most mature NK cells. Figure 5.13 shows the gating 

strategy used to identify these three populations. 

 

!
Figure 5.13: Expression of CD94 and CD16 on CD56

+
 NK cells at day 35 of HSC cultures. 

Expression of CD94 and CD16 on HSC-derived CD56
+
 NK cells at day 35 of differentiation 

(HSC alone). (A) Unstained cells. (B) Fluorescence minus one control for CD16. (C) 
Identification of three defined intermediate stages of CD56

+
 NK cells based on the expression of 

CD94 and CD16 markers. Data is a representative sample of nine independent experiments 
(HSC). 

 

It was observed that all three intermediate stages of NK cell differentiation were 

affected by the addition of TCR-stimulated CB Treg cells (Figure 5.14B) 

whereas no effect was observed when resting CB Treg cells were added at any 

indicated time point during HSC cultures (Figure 5.14A) as compared to control 

cultures. Importantly, an inhibitory effect on all intermediate stages was noted 

when TCR-stimulated CB Treg cells were added at day 9 of HSC cultures 

(Figure 5.14B). CD56+CD94-CD16- cell numbers were reduced by 75% 

(p=0.01), whereas CD56+CD94+CD16- cells (p=0.0008) and 

CD56+CD94+CD16+ cells (p=0.004) were reduced by 90% and 95% 

respectively.  

 

A reduction in the number of cells in these intermediate stages of NK cell 

differentiation was also observed when TCR-stimulated CB Treg cells were 

added at day 16 with a decrease in CD56+CD94-CD16- cell numbers of 75% 

(p=0.01) and in CD56+CD94+CD16- cell numbers of 50% (p=0.0008), whereas 
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when TCR-stimulated CB Treg cells were added at day 23 a decrease in 

CD56+CD94+CD16- cell numbers of 40% was observed (p=0.003).  

!
Figure 5.14: Total cell numbers of NK cells in the intermediate stages of NK cell 
maturation from HSC cultures. HSC were cultured in the presence or absence of allogeneic 
resting (A) or TCR-stimulated CB Treg cells (B) added at day 2, 9, 16, 23, and 30 of 
differentiation at a ratio of 1:4 (Treg cells:HSC). Flow cytometric analysis of three NK cell 
populations based on CD94 and CD16 expression gated on CD56

+
 cells at day 35 of NK cell 

differentiation. Cell numbers were calculated from the NK cell frequency determined by flow 
cytometry and total cell numbers per well. n=4-6. 

!

5.4.3 Expression of myeloid markers 

NK cell differentiation can be impaired in vitro by the addition of TCR-stimulated 

CB Treg cells at specific time points. A recent study reported that TGF-β can 

skew HSC differentiation towards cells of the myeloid lineage rather than the 

lymphoid lineage (Challen et al., 2010). Since TGF-β is one of the mechanisms 

by which Treg cells can inhibit NK cell effector functions (Ghiringhelli et al., 

2005, Smyth et al., 2006, Zhou et al., 2010), it was determined whether CB 

Treg cells skewed HSC differentiation towards cells of the myeloid lineage 

rather than NK cells in this model. 

 

To evaluate this, the expression of CD33 was analysed. CD33 is a marker 

expressed by myeloid progenitor cells and is reported to be a specific marker of 

the myeloid lineage (Freeman et al., 1995). Neither resting nor TCR-stimulated 

CB Treg cells induced an increase in the frequency of CD33+ cells in the HSC 

cultures at any of the time points analysed (Figure 5.15A-B). However, CD33 

MFIs were reduced when resting Treg cells were added at day 9 of culture 
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(p=0.03) (Figure 5.15C-D). These results suggest that Treg cells, regardless of 

their state of activation, do not favour HSC differentiation towards cells of the 

myeloid lineage in this system.  

 

Figure 5.15: Analysis of CD33 expression in HSC cultures. Frequency of CD33
+
 cells gated 

from CD4
-
CD45

+
 cells in HSC cultures in the presence or absence of allogeneic resting CB Treg 

cells (A) or TCR-stimulated CB Treg cells (B) added at days 2, 9 and 16 of HSC cultures. MFI of 
CD33 expression (gated on CD4

-
CD45

+
 cells) in the presence or absence of resting CB Treg 

cells (C) or TCR-stimulated CB Treg cells (D) added at day 2, 9 and 16 of HSC cultures. The 
values are represented as medians. n=5-8. 

!

5.5 Phenotypic analysis of differentiated NK cells in the 
presence of regulatory T cells 

5.5.1 Expression of activating and inhibitory receptors  

The integration of signals provided by activating or inhibitory receptors upon the 

detection of infected cells or tumours determines NK cell function (Pegram et 

al., 2011). It has been shown that upregulation of NKG2D on NK cells by Tcon 

cells can be abrogated by the addition of Treg cells (Bergmann et al., 2011) and 
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that Treg cells can directly downregulate NKG2D on NK cells (Ghiringhelli et al., 

2005). However, it is unknown whether Treg cells can impact on the repertoire 

of activating and inhibitory receptors expressed by NK cells during 

differentiation. To evaluate this, the expression of activating receptors such as 

CD16, DNAM-1, NKG2D, NKp30, NKp46 and 2B4 on NK cells was evaluated at 

day 35 of HSC cultures in the presence or absence of resting or TCR-stimulated 

CB Treg cells. These receptors were analysed because they are important for 

the killing capacity of NK cells (Lanier et al., 1988, Bottino et al., 2000, Sivori et 

al., 2000, Ferlazzo et al., 2002, Raulet, 2003, Byrd et al., 2007, Gilfillan et al., 

2008). 

 

Addition of resting CB Treg cells had no effect on the expression of NKp30, 

NKG2D, 2B4, or NKp46 by differentiated NK cells when added at any time point 

during HSC culture (Figure 5.16A). However, a significant decrease was 

observed in the frequency of CD16-expressing NK cells when resting CB Treg 

cells were added at day 9 of HSC cultures (4% to 2.5%; p=0.044). Moreover, 

DNAM-1 expression was reduced in frequency on differentiated NK cells when 

co-cultured with CB resting Treg cells added at day 23 (90% to 70%; p=0.007) 

and day 30 of HSC culture (90% to 70%; p=0.01). Surprisingly, no difference 

was observed in the expression of any of the activating receptors studied on the 

differentiated NK cells when TCR-stimulated CB Treg cells were added to HSC 

cultures (Figure 5.16B), except for DNAM-1, which was upregulated when co-

cultured with TCR-stimulated Treg cells added at day 2 of HSC culture.  

 

MFI levels for all receptors were also studied on differentiated NK cells in 

control HSC cultures and HSC cultures with resting CB Treg cells (Figure 

5.17A) or TCR-stimulated CB Treg cells (Figure 5.17B). Notably, NKp30 MFI 

on differentiated NK cells was reduced from 150 a.u. to 100 a.u when co-

cultured with resting Treg cells added at day 9, 16, 23 and 30 (p<0.005, 

respectively). DNAM-1 MFI was also reduced in NK cells when co-cultured with 

resting Treg cells added at day 23 (p=0.005) and 30 (p=0.01). However, 

increased MFI was detected in NKG2D-expressing NK cells when co-cultured 

with resting Treg cells added at day 30 (p=0.002). When TCR-stimulated Treg 

cells were added at day 2 of HSC cultures, differentiated NK cells showed an  
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Figure 5.16: Expression of NK cell activating receptors on NK cells at day 35 of HSC 
cultures in the presence or absence of resting or TCR-stimulated CB Treg cells. Flow 
cytometric analysis of NKp30, CD16, DNAM-1, NKG2D, 2B4 and NKp46 expression on NK cells 
at day 35 of culture. (A) Controls (HSC) and Treg cell/HSC co-cultures with allogeneic resting 
CB Treg cells. (B) Controls and Treg cell/HSC co-cultures with allogeneic TCR-stimulated CB 
Treg cells. CB Treg cells were added at a ratio of 1:4 (Treg cells:HSC) at different time points of 
HSC cultures except for day 2 where the ratio was 1:1. The lines are represented as medians. 
n=3-5.  

!
Figure 5.17: MFI of NK cell activating receptors on differentiated NK cells in the presence 
or absence of resting or TCR-stimulated CB Treg cells. Flow cytometric analysis of NKp30, 
CD16, DNAM-1, NKG2D, 2B4, and NKp46 MFI for NK cells at day 35 of NK cell differentiation. 
(A) Controls (HSC) and Treg cell/HSC co-cultures with allogeneic resting CB Treg cells. (B) 
Controls and Treg cell/HSC co-cultures with allogeneic TCR-stimulated CB Treg cells. CB Treg 
cells were added at a ratio of 1:4 (Treg cells:HSC) at different time points, except for day 2 
where the ratio was 1:1. The lines are represented as medians. n=3. 
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increased in MFIs in NKp30 (p=0.006), DNAM-1 (p=0.01) and NKG2D (p=0.01). 

Likewise, CD16 (p=0.01), DNAM-1 (p=0.006) and NKG2D (p=0.005) were 

increased when TCR-stimulated Treg cells were added at day 9. 

5.5.2 Expression of homing and chemokine receptors 

NK cell differentiation can take place in the BM, thymus, liver, SLT and spleen 

(Huntington et al., 2007), all of which are sites of potential interaction with Treg 

cells. When differentiated, NK cells can migrate to SLT and inflamed peripheral 

tissues by upregulating expression of α4β7, CCR7, CXCR1 and CXCR3 (Erle et 

al., 1994, Morohashi et al., 1995, Uksila et al., 1997, Campbell et al., 2001) and 

downregulating CXCR4, a homing receptor for the BM (Bernardini et al., 2008). 

As TGF-β has been shown to upregulate CXCR4 and CXCR3 expression on 

resting NK cells (Castriconi et al., 2013), it is plausible that CB Treg cells can 

also modulate the expression of homing and chemokine receptors on 

differentiated NK cells from HSC cultures, TGF-β being key in Treg cell-

mediated suppression of mature PB NK cells (Ghiringhelli et al., 2005).  

 

In order to explore this, expression of α4β7, CCR7, LFA-1 and CXCR4 was 

analysed by flow cytometry on NK cells in HSC cultures in the presence or 

absence of resting or TCR-stimulated CB Treg cells. Expression of all homing 

receptors studied was not affected by the presence of resting CB Treg cells, 

except for CXCR4, for which a reduction in expression was observed at day 23 

of culture (p=0.023; 5% reduction in total CXCR4+ NK cells) (Figure 5.18A).  

 

TCR-stimulated CB Treg cells had an impact on the expression of integrin β7, 

LFA-1, CXCR4 and CCR7 on NK cells, particularly when TCR-stimulated CB 

Treg cells were added at day 9 of HSC cultures (Figure 5.18B), with increases 

in expression of integrin β7 and LFA-1 by 10% (p=0.055) and 26% (p=0.045) 

respectively, and a decrease in CXCR4 expression of 12% (p=0.01). Moreover, 

when TCR-stimulated CB Treg cells were added at later time points of HSC 

culture, an impact on CCR7 and LFA-1 expression was detected. CCR7-

expressing NK cells were reduced by ~15% at days 16 (p=0.02) and days 30 
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(p=0.007) whereas LFA-1 was increased by 10% at days 16, 23 and 30 

(p=0.03, respectively).  

 

Figure 5.18: Expression of homing and chemokine receptors at day 35 of HSC cultures in 
the presence or absence of resting or TCR-stimulated CB Treg cells. Flow cytometric 
analysis of integrins α4 and β7, LFA-1, CXCR4, and CCR7 expression by differentiated NK cells 
at day 35 of culture. (A) Controls (HSC) and co-cultures with allogeneic resting CB Treg cells. 
(B) Controls and co-cultures with allogeneic TCR-stimulated CB Treg cells. CB Treg cells were 
added at a ratio of 1:4 (Treg cells:HSC) at different time points, except when added at day 2 
where the ratio was 1:1. The lines are represented as medians. n=5-8.  

  

Regarding MFI levels of the receptors previously studied, no difference was 

observed between HSC cultures regardless of whether resting or TCR-

stimulated CB Treg cells were added or not (Figure 5.19A-B). Collectively, 

these results suggest that CB Treg cells can modulate the trafficking repertoire 

of differentiated NK cells. 
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!
Figure 5.19: MFI of homing receptors on NK cells at day 35 of culture in the presence or 
absence of resting or TCR-stimulated CB Treg cells. Integrins α4 and β7, LFA-1, CXCR4, 
and CCR7 MFI on differentiated NK cells at day 35 of culture. (A) Controls (HSC) and co-
cultures with allogeneic resting CB Treg cells. (B) Controls and co-cultures with allogeneic TCR-
stimulated CB Treg cells. Treg cells were added at a ratio of 1:4 (Treg cells:HSC) at different 
time points, except for day 2 where the ratio was 1:1. The lines are represented as medians. 
n=5-8. 

!

5.6 Effect of regulatory T cells on natural killer cell 
function 

Next, the functional capacities of those NK cells that acquire a NK cell 

phenotype were analysed in the presence of resting or TCR-stimulated CB Treg 

cells added at key time points of HSC cultures.  

5.6.1 Interferon-γ secretion 

It has been reported that PB Treg cells can reduce IFN-γ production by NK cells 

in the presence of IL-12 but not IL-2 or IL-15 (Ghiringhelli et al., 2005). As IFN-γ 

plays a key role in NK cell function, the ability of resting or TCR-stimulated CB 

Treg cells to impair IFN-γ production by the differentiated NK cells was 

determined. To assess this, IFN-γ secretion by the differentiated NK cells was 

measured in response to different stimuli: K562 cells at a 1:1 ratio (K562 

cells:NK cells) and PMA/ION as a positive control. Here, it was found that CB 

Treg cells, regardless of the time of addition to the cultures and state of 

stimulation, did not impair IFN-γ secretion by differentiated NK cells (Figure 

5.20A-B). Under non-stimulated conditions and with K562 stimulation, 
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differentiated NK cells secreted between 0 and 450 pg/ml of IFN-γ respectively 

in all conditions tested. Moreover, when differentiated NK cells were stimulated 

with PMA/ION, IFN-γ levels ranged between 2 500 and 10 000 pg/ml in all 

conditions tested (Figure 5.20A-B). Hence, these results suggest that CB Treg 

cells do not impact on cytokine production by differentiated NK cells.  

 

 

Figure 5.20: IFN-γ secretion by differentiated NK cells at day 35 of HSC cultures. HSC 
were cultured with allogeneic resting CB Treg cells (A) or TCR-stimulated CB Treg cells (B) 
added at days 2, 9, 16, 23 or 30 of HSC cultures. NK cells from controls (HSC) and Treg 
cell/HSC co-cultures were stimulated or not with K562 cells at a ratio of 1:1 or PMA/ION for 2 h. 
Supernatants were collected and analysed by ELISA. Results are represented as means of 
duplicate wells. The values shown in the graphs represent medians. n=3-6. 

!

5.6.2 Natural killer cell cytotoxicity 

The results presented in Chapter 4 showed that autologous and allogeneic 

TCR-stimulated CB Treg cells could inhibit the killing capacity of activated CB 

NK cells in the absence of cytokines. Therefore, it is plausible that TCR-

stimulated CB Treg cells could also affect the killing capacity of differentiated 

NK cells. To evaluate this, allogeneic resting or TCR-stimulated CB Treg cells 

were added at key time points during HSC cultures and the impact of CB Treg 

cells on differentiated NK cells was measured by the lysis of K562 using 

chromium release assays.  

 

These results showed that CB Treg cells, regardless of their activation state and 

time of addition during HSC cultures, did not impair the killing capacity of 

differentiated NK cells (Figure 5.21). Overall, it was demonstrated that the 
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functions of the cells that acquire a mature NK cell phenotype are not affected 

by the presence of CB Treg cells.  

 

 

Figure 5.21: Cytolytic activity of differentiated NK cells at day 35 of HSC cultures. HSC 
were cultured with allogeneic resting CB Treg cells (A) or TCR-stimulated CB Treg cells (B) 
added at days 2, 9, 16, 23 or 30 of HSC cultures. Cytotoxicity of NK cells alone or in co-culture 
was measured at day 35 of NK cell differentiation against K562 targets at a E:T ratio of 5:1. 
Results of the chromium release assay are represented as means of triplicate wells. Percentage 
of specific lysis was determined by the following equation: % lysis= [(experimental release - 
spontaneous release)/(maximum release - spontaneous release)]*100. The values represent 
medians. n=3-6.  

5.6.3 Degranulation assay 

The expression of CD107a (LAMP-1) by NK cells correlates with levels of 

degranulation (Alter et al., 2004). In Chapter 4, a trend towards reduction in 

expression of CD107a on activated NK cells co-cultured with allogeneic TCR-

stimulated CB Treg cells in the absence of cytokines was observed. Therefore, 

it was next investigated whether the expression of CD107a on differentiated NK 

cells could also be affected by the presence of CB Treg cells. To study this, 

allogeneic resting or TCR-stimulated CB Treg cells were added to HSC cultures 

at key time points during HSC cultures and CD107a expression on 

differentiated NK cells was analysed when unstimulated or after stimulation with 

K562 cells or PMA/ION.  

 

The degranulation of differentiated NK cells was similar to the results observed 

with chromium release assays; however statistical significance was detected in 

some conditions. When non-stimulated, less than 10% of differentiated NK cells 

degranulated (Figure 5.22). The results were similar for differentiated NK cells 
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from HSC cultures with or without resting or TCR-stimulated CB Treg cells. 

When differentiated NK cells were stimulated with K562 cells, 20-40% of NK 

cells were CD107a-positive for all conditions tested (Figure 5.22A-B). An 

increased of 5% of CD107a expression was particularly observed when resting 

and TCR-stimulated Treg cells were added at day 9 (p=0.02 and p=0.01, 

respectively) and day 16 (p=0.01 and p=0.02, respectively) of HSC cultures. 

After PMA/ION stimulation, ~60% of NK cells from HSC cultures with resting CB 

Treg cells degranulated (Figure 5.22A), whereas 20-50% of NK cells from HSC 

cultures with TCR-stimulated CB Treg cells degranulated (Figure 5.22B). 

Upregulation of CD107a was detected when in HSC were cultured with TCR-

stimulated Treg cells added at days 2 (p=0.003), 9 (p=0.008) and 16 (p=0.01). 

Collectively, these results suggest that NK cells that differentiated in the 

cultures where CB Treg cells were present were functional and even showed 

slightly enhanced cytotoxicity. However, statistical significance was not 

observed in chromium release assays.  

 

 

Figure 5.22: CD107a expression on differentiated NK cells in the presence or absence of 
resting or TCR-stimulated CB Treg cells. HSC were cultured with allogeneic resting CB Treg 
cells or TCR-stimulated CB Treg cells added at days 2, 9, 16, 23 or 30 of HSC culture. At day 
35 of HSC cultures, differentiated NK cells were incubated or not with K562 cells (1:1 ratio) or 
PMA/ION for 2 h. (A-B) Percentage of CD56

+
 NK cells expressing CD107a under different 

stimuli. (C-D) MFI of CD107a expressing CD56
+
 NK cells. The lines represent medians. n=3. 
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5.7 Gene expression analysis of natural killer cell 
differentiation in the presence of regulatory T cells 

Marcoe and colleagues demonstrated the impact of TGF-β on NK cell 

differentiation in mice by inhibiting TFs such as Gata-3 and T-bet, that are 

crucial for NK cell maturation (Marcoe et al., 2012). Therefore, it is possible that 

CB Treg cells also induce the downregulation of these TFs in NK cell 

differentiation. For this, mRNA expression of genes involved in NK cell 

differentiation (E4bp4, Id2, Pu.1 and Tox), NK cell maturation (Helios, Irf-2, T-

bet, Bcl11b, Eomes and Gata-3), and NK cell function (IFN-γ) (Martin-Fontecha 

et al., 2011, Luevano et al., 2012c, Male et al., 2012) were analysed.  

 

At day 9 of HSC cultures, resting or TCR-stimulated Treg cells were added to 

the cultures at a ratio of 1:4 (Treg cell:HSC) and co-cultured until day 12 or day 

35. Then, HSC were separated from Treg cells by cell sorting and then 

analysed by real time PCR. This protocol was used in the following three 

sections. Since no effect was observed on NK cell differentiation when HSC 

were co-cultured with resting Treg cells, they were used as a negative control 

for this study.  

5.7.1 Transcription factors involved in natural killer cell 
differentiation 

mRNA expression of E4bp4, Id.2, and Pu.1 were similar in HSC co-cultured 

with resting or TCR-stimulated CB Treg cells until day 12 or day 35 of culture 

(Figure 5.23A-B). However, at day 12, TCR-stimulated CB Treg cells induced 

higher mRNA expression of Tox by HSC than resting CB Treg cells (p=0.02), 

yet, this effect was no longer observed at day 35 of culture (Figure 5.23B), 

suggesting that the effect mediated by Treg cells occurs within the first three 

days of Treg cell/HSC co-cultures.  
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Figure 5.23: Expression of TFs involved in NK cell differentiation. Allogeneic resting or 
TCR-stimulated CB Treg cells were added at day 9 of HSC cultures. HSC and Treg cells were 
separated by cell sorting at day 12 or day 35 of culture. Total RNA from Treg cell-depleted HSC 
was extracted and analysed by real time PCR. (A) mRNA expression levels of E4bp4, Id2, Pu.1 
and Tox at day 12 of culture. (B) mRNA expression levels of E4bp4, Id2, Pu.1 and Tox at day 
35 of culture. The lines represent medians. n=3-4. 

!

5.7.2 Transcription factors involved in natural killer cell maturation 

TCR-stimulated CB Treg cells increased mRNA expression levels of Helios 

(p=0.02), T-bet (p=0.02), Bcl11b (p=0.02), and Gata-3 (p=0.02) in HSC at day 

12 of co-culture (Figure 5.24A,C) but not of Irf-2 or Eomes. The effect of TCR-

stimulated CB Treg cells on the expression levels of Helios, Irf-2 and T-bet in 

HSC was not observed at day 35 of co-cultures (Figure 5.24B). Bcl11b, Eomes, 

and Gata-3 mRNA expression levels in HSC could not be tested at day 35 of 

cultures due to the low amounts of total RNA obtained from these cultures.  
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!
Figure 5.24: Expression of TFs involved in NK cell maturation. Allogeneic resting or TCR-
stimulated CB Treg cells were added at day 9 of HSC cultures. HSC and Treg cells were 
separated by cell sorting at day 12 or day 35 of culture. Total RNA from Treg cell-depleted HSC 
was extracted and analysed by real time PCR. (A, C) mRNA expression levels of Helios, Irf-2, 
Bcl11b, Eomes and Gata-3 at day 12 of culture. (B) mRNA expression levels of Helios, Irf-2 and 
T-bet at day 35 of culture. Bcl11b, Eomes and Gata-3 could not be tested at day 35 of culture 
due to lack of total RNA on the samples. The lines represent medians. n=3-4. 

!

5.7.3 Natural killer cell function: analysis of IFN-γ mRNA 
expression 

Even though IFN-γ production does not occur before NK cells differentiate into 

CD56bright cells (Freud et al., 2006), it is possible that IFN-γ gene transcription 

could be impaired at early stages in the presence of CB Treg cells. Interestingly, 

HSC co-cultured with TCR-simulated CB Treg cells until day 12 showed higher 

IFN-γ mRNA levels than HSC co-cultured with resting CB Treg cells (p=0.02) 

(Figure 5.25). IFN-γ expression could not be tested at day 35 (day 9-35 co-

cultures) in HSC because of the low amount of total RNA obtained from these 

cultures. 
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Figure 5.25: IFN-γ mRNA levels in HSC co-cultured with Treg cells. Allogeneic resting or 
TCR-stimulated CB Treg cells were added at day 9 of HSC cultures. HSC and Treg cells were 
separated by cell sorting at day 12 of culture. Total RNA from HSC was extracted and analysed 
by real time PCR. The lines represent medians. n=4. 

!

Altogether, no downregulation of any of the studied TFs involved in NK cell 

differentiation and maturation was detected for HSC cultured with TCR-

stimulated CB Treg cells. These results provide evidence to suggest that HSC 

are not negatively affected at the molecular level when cultured with TCR-

stimulated CB Treg cells.  

5.8 Analysis of regulatory T cells on haematopoietic 
stem cell cultures  

Several studies have suggested the ability of Treg cells to “reprogram” into pro-

inflammatory cells, allowing cells to adapt to different conditions (Gao et al., 

2012). For instance, Yang and colleagues demonstrated that a subset of tTreg 

cells could lose Foxp3 expression in the presence of IL-6 and TCR-stimulation 

and acquire a Th17 phenotype (Yang et al., 2008). Hence, it is unknown if the 

conditions used in this study for NK cell differentiation could favour Treg cells to 

change their phenotype. To investigate this, the expression of Foxp3 and LAP 

in CB Treg cells was analysed by flow cytometry and the mRNA expression 

levels of TFs that have been described as master regulators of CD4+ T cell 

subsets such as T-bet (Th1 cells), Gata-3 (Th2 cells), Rorc (Th17 cells), and 

Foxp3 (Treg cells) were assessed by real time PCR.  
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5.8.1 Regulatory T cell phenotype 

Treg cells were identified at the end of HSC/Treg cell co-cultures by the 

expression of Foxp3 and the TGF-β precursor protein LAP (Khalil, 1999). 

Resting or TCR-stimulated CB Treg cells were added at key time points of HSC 

cultures. Foxp3 and LAP expression by CD4+ T cells was analysed by flow 

cytometry at day 35 of HSC cultures.  

 

When resting CB Treg cells were added at any key time point during HSC 

cultures, Foxp3 MFI levels ranged between 25 and 45 a.u. (Figure 5.26A). In 

contrast, TCR-stimulated CB Treg cells maintained higher MFI levels for Foxp3 

of ~100 a.u. (Figure 5.26B). This can be clearly observed in the histogram plots 

shown in Figure 5.26C. LAP expression was not detected in CB Treg cells for 

any of the culture conditions tested (Figure 5.26C). This could be due to the 

fast downregulation of LAP on Treg cells upon TCR-stimulation, which results in 

the availability of TGF-β.  
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Figure 5.26: Phenotypic analysis of CB Treg cells in Treg cell/HSC co-cultures. Flow 
cytometric analysis of Foxp3 gated on CD4

+
 cells. Resting CB Treg cells (A) or TCR-stimulated 

CB Treg cells (plate bound anti-CD3/soluble anti-CD28) (B) were added at key time points of 
HSC cultures. CD56

+
 cells were used as negative controls for Foxp3 expression. (C) 

Representative flow cytometric analysis of Foxp3 and LAP expression on controls and in co-
cultures (HSC+ resting or TCR-stimulated CB Treg cells). The lines represent medians. n=3-6. 

!

5.8.2 Gene expression analysis of regulatory T cells in 
haematopoietic stem cell cultures  

To evaluate whether CB Treg cells change their phenotype after being added to 

HSC cultures, the mRNA expression of Foxp3 and TFs that are characteristic of 

other CD4+ T cell subsets, was determined.  These included T-bet for Th1 cells, 

Gata-3 for Th2 cells and Rorc for Th17 cells. Resting or TCR-stimulated CB 

Treg cells were analysed before or after being added at day 9 of HSC cultures. 

To eliminate effects on Treg cells potentially induced by cytokines used in the 

HSC cultures (i.e. IL-3, IL-7, IL-15, Flt3 and SCF) or factors released by the 
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EL08.1D2 feeder layer cells, CB Treg cells were re-isolated from HSC by cell 

sorting three days later (D12 of cultures), before RNA extraction and analysis by 

real time PCR.  

 

Interestingly, Foxp3 mRNA levels were significantly downregulated in resting 

CB Treg cells added for three days to HSC cultures when compared to resting 

CB Treg cells (p=0.028) before addition to HSC cultures. Likewise, Gata-3 

(p=0.028) and Rorc (p=0.028) were also downregulated in resting CB Treg cells 

after being added to HSC cultures for three days (Figure 5.27). In contrast, T-

bet and IFN-γ expression which was similar before and after being added to 

HSC cultures. 

 

Figure 5.27: Gene expression of signature TFs of CD4 T helper subsets on resting CB 
Treg cells. HSC were cultured in the presence or absence of resting CB Treg cells at day 9 of 
differentiation and then CD4

+
 cells were separated by cell sorting at day 12 for analysis by real 

time PCR. TFs Foxp3, Gata-3, Rorc, T-bet, and IFN-γ were assessed. Freshly isolated CB Treg 
cells (black) were used as controls. The lines represent medians. n=4. 

 

As for TCR-stimulated CB Treg cells, only Foxp3 mRNA levels were 

downregulated three days after addition to HSC cultures (p=0.015). However, 

no difference was observed in the expression of Gata-3, Rorc, T-bet or IFN-γ 

between TCR-stimulated CB Treg cells before or after being added to HSC 

cultures (Figure 5.28). Therefore, CB Treg cells do not change their phenotype 

after three days of culture under HSC culture conditions.  
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Figure 5.28: Gene expression of signature TFs of CD4 T helper subsets on TCR-
stimulated CB Treg cells. HSC were cultured in the presence or absence of TCR-stimulated 
CB Treg cells at day 9 of differentiation and then CD4

+
 cells were separated by cell sorting at 

day 12 for analysis by real time PCR. TFs Foxp3, Gata-3, Rorc, T-bet and IFN-γ were 
assessed. TCR-stimulated CB Treg cells before being added to HSC cultures (blue) were used 
as controls. The lines represent medians. n=4. 
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5.9 Discussion 

Treg cell-based therapies to prevent GvHD should be carefully assessed since 

they could compromise NK cell-mediated control of infections and GvL as well 

as immune reconstitution. Currently, these results and the work of others have 

demonstrated that Treg cells can abrogate NK cell effector function under 

certain conditions (Trzonkowski et al., 2004, Ghiringhelli et al., 2005, 

Romagnani et al., 2005, Sun et al., 2010, Zhou et al., 2010, Bergmann et al., 

2011). However, it remains unknown if Treg cells could also compromise NK 

cell differentiation.  

 

In this chapter, the impact of CB Treg cells on NK cell differentiation was 

evaluated using a well-established in vitro model of NK cell differentiation from 

CB CD34+ HSC (Grzywacz et al., 2006, Luevano, 2013) in which allogeneic 

resting or TCR-stimulated CB Treg cells were added at key time points during 

HSC cultures. The impact of CB Treg cells on NK cell differentiation was 

measured by the analysis of cell count, viability, frequency of NK cell stages, 

NK cell phenotype, NK cell functions and gene expression. 

 

First, the potential inhibition of CB Treg cells on NK cell differentiation was 

determined by the analysis of NK cell production at the end of HSC cultures 

(day 35). Remarkably, 90% reduction in total NK cell numbers was observed at 

the end of HSC cultures in the presence of TCR-stimulated CB Treg cells, but 

not with resting CB Treg cells. The effect was particularly evident when TCR-

stimulated CB Treg cells were added at day 9 of differentiation, time point at 

which HSC commitment to the NK cell lineage occurs. To date, no information 

is available on the effects of Treg cells on NK cell differentiation. However, 

various studies have focused on the effect of Treg cells on HSC and mature NK 

cells. Fujisaki and colleagues (Fujisaki et al., 2011) showed reduced HSC 

viability (70-90%) upon Treg cell depletion in a mouse model of HSCT, 

suggesting by this that Treg cells act as facilitators of allogeneic tolerance. 

Conversely, others have observed suppression of mature NK cell numbers in 

the presence of Treg cells. For instance in Scurfy mice, characterised by the 
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lack of Foxp3 expression that is necessary for the development of Treg cells, 

enhanced NK cell proliferation is observed (Brunkow et al., 2001). Also, 

depletion of Treg cells by anti-CD25 mAb injection in C57BL/6 mice (Ghiringhelli 

et al., 2005) or by diphtheria toxin in Foxp3DTR mice (Kim et al., 2007) increases 

NK cell numbers in the LN and spleen.  

 

Furthermore, the analysis of defined NK cell stages of differentiation using the 

expression of CD34, CD117, CD94 and CD3 (Freud et al., 2006) highlights that 

stages 1 and 2 were not impaired in the presence of CB Treg cells, whereas 

stage 3 and 4 cells were severely compromised. In fact, it seems that NK cell 

differentiation is completely abrogated upon CB Treg cell addition (particularly 

at day 9), suggesting that Treg cells specifically suppress HSC commitment to 

the NK cell lineage. It may be possible that CB Treg cells induce cell cycle 

arrest, as observed in studies with PB Treg cells and mature NK cells 

(Romagnani et al., 2005); however, this still requires further investigation.  

 

Recent work from Challen and colleagues has demonstrated the capacity of 

TGF-β1 to favour differentiation of HSC into myeloid rather than lymphoid 

lineage cells in transplanted mice (Challen et al., 2010). Since TGF-β is 

reported to be key for Treg cell-mediated suppression, it is plausible that Treg 

cells can also induce myeloid lineaged differentiation in this model. Expression 

of the myeloid cell marker CD33 was assessed during the first weeks of NK cell 

differentiation in the presence or absence of resting or TCR-stimulated CB Treg 

cells. No upregulation in expression of this marker were observed in the HSC 

co-cultured with resting or TCR-stimulated CB Treg cells, regardless of the time 

at which Treg cells were added. The discrepancy between this study and the 

work of Challen and colleagues may be due to differences in the source of HSC 

used, since Challen and colleagues used myeloid and lymphoid-biased HSC 

subsets based on the expression of the CD150 marker in mice. 

 

These data provide evidence that CB Treg cells impose constraints on the 

commitment of HSC to the NK cell lineage, but what is the state of the few NK 

cells that still acquire a full NK cell phenotype at the end of these cultures? The 

phenotype of differentiated NK cells was assessed by analysing expression of 
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activating receptors (NKp30, CD16, DNAM-1, NKG2D, 2B4 and NKp460) and 

receptors associated with trafficking (integrins α4 and β7, L-selectin, LFA-1, 

CXCR4 and CCR7). Interestingly, TCR-stimulated Treg cells did not affect 

expression of any of the activating receptors analysed on those differentiated 

NK cells. These results were unexpected since NKG2D and NKp30 

downregulation on NK cells by TGF-β has been previously described 

(Castriconi et al., 2003). However, when resting Treg cells where added at late 

time points of HSC cultures (D23 and D30), downregulation of CD16 and 

DNAM-1 was observed in differentiated NK cells. These results is in fact 

consistent to the results observed on freshly isolated CB NK cells when co-

cultured with resting Treg cells (Chapter 4).  

 

 TCR-stimulated CB Treg cells did modulate the trafficking repertoire of 

differentiated NK cells. CXCR4 is a crucial chemokine receptor for NK cell 

development and homing to the BM (Beider et al., 2003, Noda et al., 2011). In 

this study, it was found that resting CB Treg cells added at day 23 of culture 

and TCR-stimulated CB Treg cells added at day 9 of culture induced the 

downregulation of CXCR4 on differentiated NK cells. These results suggest that 

Treg cells may induce NK cells to leave the BM. However, it was surprising to 

also observe CXCR4 downregulation induced by resting CB Treg cells. This can 

be explained by the findings of Ghiringhelli and colleagues who demonstrate 

that PB Treg cells can decrease NK cell effector functions through membrane-

bound TGF-β on Treg cells without the need for TCR-stimulation (Ghiringhelli et 

al., 2005). 

 

Downregulation of CCR7, accompanied with increased expression of integrin 

β7, was detected on the differentiated NK cells in cultures with TCR-stimulated 

CB Treg cells, suggesting that the ability of these cells to migrate to the LN is 

reduced in these conditions. Interestingly, Reeves and colleagues found similar 

results in symian immunodeficiency virus infected (SIV)-macaques in which 

infected NK cells showed reduced expression of CCR7 and increased 

expression of integrin α4β7, suggesting a preferential migration into the gut 

rather than the LN (Reeves et al., 2010). Furthermore, it seems as though loss 

of CCR7 expression by NK cells may correlate with enhanced functional 
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capacity. In HIV-1 patients, CCR7-CD56bright NK cells display increased cytolytic 

potential, higher activation state and a more differentiated phenotype (Hong et 

al., 2012). However, the findings presented in this study indicate no 

enhancement in NK cell functions. Studies such as transwell migration assays 

are required to further demonstrate that Treg cells modulate the migratory 

capacity of differentiated NK cells in this system.  

 

Remarkably, the few cells that acquire a NK cell phenotype were functional, as 

tested by cytotoxicity assays, degranulation assays and the analysis of IFN-γ 

production by ELISA. This seems to be in line with the existing literature, which 

describes an effect on NK cell functions exclusively in the absence of cytokines, 

proposed as a mechanism of NK cell tolerance (Gasteiger et al., 2013a, 

Kerdiles et al., 2013, Sitrin et al., 2013).  

 

Given that CB Treg cells inhibit commitment of HSC to the NK cell lineage, one 

could expect TFs involved in NK cell differentiation to be differentially expressed 

by HSC in the presence of TCR-stimulated CB Treg cells. Studies in mice 

highlight the importance of E4BP4, Pu.1, Id2 and Tox for NK cell differentiation, 

as deficient-mice in these TFs have reduced NK cell numbers (Colucci, 2001, 

Boos et al., 2007, Gascoyne et al., 2009, Yun et al., 2011). In this study, no 

change in expression in HSC of any of the TFs analysed was observed in the 

presence of TCR-stimulated CB Treg cells, except for Tox, for which increased 

expression was observed. As for TFs involved in NK cell maturation, TCR-

stimulated CB Treg cells added at day 9 of cultures induced enhanced 

expression of Helios, T-bet, Bcl11b, and Gata-3, TFs necessary for NK cell 

maturation. There are two possible explanations for these observations. Firstly, 

given that all previous studies that analysed TFs involved in NK cell 

differentiation and function were performed in mice, it is possible that the 

functions of these TFs may differ in humans. The second explanation is based 

on the fact that cell numbers were constant for the remainder of the culture 

period after addition of TCR-stimulated Treg cells at day 9 of cultures, which 

may suggest that the Treg cell-depleted HSC that were analysed were the only 

cells that managed to acquire a full NK cell phenotype.  
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Culture of Treg cells using HSC culture conditions consisiting of a feeder layer 

and cytokines such as IL-3, IL-15, IL-17, SCF and FLT-3L has never been 

described; therefore, it was assessed whether Treg cells could maintain their 

phenotype in these conditions, as plasticity is an evolutionary characteristic of T 

cells (Gao et al., 2012). Cellular and molecular analyses of CB Treg cells were 

performed at the end of HSC cultures and at the time point where the strongest 

effect was observed on HSC (day 9 and co-cultured for three days). The 

presence of Treg cells was confirmed by measuring expression of Foxp3 by 

intranuclear staining with no difference in expression levels of TFs associated 

with other CD4+ T cells subsets including Gata-3, Rorc or T-bet. In fact, the 

viability and proliferation of TCR-stimulated CB Treg cells observed in HSC 

cultures (particularly at day 9 and to a lesser extent at the other time points) 

could be accounted for their affinity for IL-15 (particularly CB Treg cells) that 

induces Treg cell proliferation in the same manner as IL-2 (Lee et al., 2009a). 

Reduced cell numbers after cell sorting did not allow us to perform a molecular 

study at the end point of NK cell differentiation (day 35). This, accompanied with 

Foxp3 methylation studies would provide more evidence on the state of TCR-

stimulated CB Treg cells in these particular conditions.  

 

This study demonstrates for the first time the suppressive capacity of TCR-

stimulated CB Treg cells on NK cell differentiation, particularly when HSC 

commitment to the NK cell lineage occurs. The similarity of results of studies on 

TGF-β on NK cell differentiation in mice with ours may suggest Treg cells as a 

source of TGF-β during ontogeny that negatively regulate NK cell differentiation, 

as presented in Table 5.1. 

!  
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Table 5.1: Comparison of the results presented in this study (*time point where the 
strongest effect was observed; HSC+TCR-stimulated Treg cells (D9)) with existing 
studies on the impact of soluble TGF-β on NK cell ontogeny and functions.  

Finding This study* Studies with the addition of 
TGF-β 

HSC numbers 

and viability 

Not impaired Decreased proliferative 

capacity in vivo (Larsson et al., 

2003, Larsson and Karlsson, 
2005, Yamazaki et al., 2009), 

and decreased viability in vivo 

(Fujisaki et al., 2011) 

Suppressive effect with high 
concentrations of TGF-β and 

stimulatory effects with low 

concentrations of TGF-β (Kale, 
2004, Kale and Vaidya, 2004) 

NK cell numbers Decreased by 90% Decreased by 95-98% (Marcoe 

et al., 2012) 

NK cell viability Not impaired N/D 

NK cell stages Blockage of Stage 3-4 of NK 

cell differentiation.  

Decreased numbers of Stage F 

mature NK cells (Marcoe et al., 

2012) 

Expression of 
CD16 and CD94 

Decreased Blockage on maturation 
(Marcoe et al., 2012)  

Presence of 

myeloid lineage 

cells 

No upregulation is observed 

in the expression of CD33 

myeloid marker 

Myeloid-based HSC proliferate 

better than lymphoid-biased 

HSC in vivo (Challen et al., 
2010) 

NK cell 

phenotype 

Activating receptors not 

impaired. Decrease in 
CXCR4 and CCR7-positive 

NK cells. Increase in integrin 

β7 and LFA-1-positive NK 

cells. 

Upregulated expression of 

CXCR4 and CXCR3 on PB NK 
cells (Castriconi et al., 2013). 

Downregulated expression of 

NKG2D and NKp30 (Castriconi 

et al., 2003) 

NK cell functions Not impaired Decreased IFN-γ production by 

mature NK cells in mice 

(Laouar et al., 2005). 
Decreased cytotoxicity by 

mature NK cells (Castriconi et 

al., 2003) 

Cytotoxicity not impaired 
(Ghiringhelli et al., 2005) 

NK cell TFs 

involved in 
differentiation 

Increased Tox mRNA 

expression in TCR-stimulated 
Treg cell-depleted HSC  

N/D 

NK cell TFs 

involved in 

maturation and 
function 

Increased Helios, T-bet, 

Bcl11b, Gata-3 and IFN-γ 

mRNA expression in TCR-
stimulated Treg cell-depleted 

HSC 

Increased T-bet and Gata-3 in 

TGF-β resistant mNK cells 

(Marcoe et al., 2012) 

!
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6 Mechanism of suppression of 
regulatory T cells on natural 
killer cell differentiation 

6.1 Introduction 

The work presented in this thesis as well as data reported by other groups 

demonstrate the capacity of Treg cells to suppress NK functions (Trzonkowski 

et al., 2004, Ghiringhelli et al., 2005, Smyth et al., 2006, Sun et al., 2010, Zhou 

et al., 2010). The mechanisms by which Treg cells suppress NK cell effector 

functions have been studied in humans and mice and are summarised in Table 

1.2. Ghiringhelli and colleagues showed that TGF-β neutralisation reverted Treg 

cell-mediated inhibition of NK cell effector functions in GIST patients and 

healthy individuals (Ghiringhelli et al., 2005). Moreover, Smyth and colleagues 

demonstrated that neutralisation of TGF-β but not IL-10 in mice could restore 

NK cell effector functions and revert Treg cell-mediated suppression (Smyth et 

al., 2006). Trzonkowski and colleagues confirmed that IL-10 does not play a 

role in Treg cell-mediated suppression of NK cells. This was observed in an in 

vitro model in which human Treg cells inhibit NK cell effector functions in the 

presence of APCs; yet neutralisation of IL-10 did not restore NK cell functions 

(Trzonkowski et al., 2004). Altogether, these reports suggest that TGF-β, but 

not IL-10, is the mediator by which Treg cells suppress NK cells.  
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It has also been reported that Treg cells require cell contact to exert 

suppressive functions (Ghiringhelli et al., 2005, Smyth et al., 2006, Zhou et al., 

2010, Bergmann et al., 2011). Smyth and colleagues showed that cell contact 

between NK cells and Treg cells was necessary for suppression to occur in their 

in vitro culture system. Moreover, the authors investigated whether NK cell 

effector functions could be restored after depletion of Treg cells. Indeed, NK 

cells displayed similar levels of cytotoxicity against tumour cells after Treg cells 

were depleted, thus suggesting that Treg cells require contact with NK cells to 

mediate suppression. 

 

Treg cells can also suppress NK cells by IL-2 deprivation. Sitrin and colleagues 

observed that Treg cells regulate NK cells via IL-2 in a mouse model of 

diabetes, since IL-2 neutralisation can revert this effect and IL-2 

supplementation enabled NK cells to overcome Treg cell suppression (Sitrin et 

al., 2013). Gasteiger and colleagues confirmed these findings in a Foxp3DTR 

mouse model in which Treg cells can be depleted by treatment with diphtheria 

toxin (Gasteiger et al., 2013b). In this model, the authors observed that the 

inhibition of NK cell cytotoxicity caused by Treg cells could be reverted in the 

absence of Treg cells, but induced upon IL-2 neutralisation. These reports 

described an additional mechanism by which Treg cells suppress mature NK 

cells; however no information is available on how Treg cells can suppress NK 

cell differentiation.  

 

In Chapter 5, it was demonstrated that TCR-stimulated CB Treg cells inhibit NK 

cell differentiation, particularly if added when HSC commitment to the NK cell 

lineage occurs. This chapter seeks to (i) determine the mechanism(s) by which 

CB Treg cells suppress NK cell differentiation, (ii) assess whether CB Treg cells 

require cell contact to be suppressive and (iii) determine whether CB Treg cells 

can also exert suppression by cytokine deprivation. 

!  
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6.2 Measurement of TGF-β and IL-10 in haematopoietic 
stem cell cultures  

6.2.1  TGF-β and IL-10 secretion in haematopoietic stem cell 
cultures  

Most studies have identified TGF-β as the mediator responsible for NK cell 

suppression by Treg cells from human PB cells and in mice (Ghiringhelli et al., 

2005, Smyth et al., 2006, Lundqvist et al., 2009, Zhou et al., 2010). Hence, 

TGF-β and also IL-10 were evaluated as candidates for inhibition of NK cell 

differentiation by CB Treg cells. For this, resting and TCR-stimulated Treg cells 

were added on day 9 of HSC culture as these co-cultures exhibited the 

strongest suppressive effect on NK cell differentiation. 

 

TGF-β secretion was analysed every week for 35 days in HSC cultures with or 

without resting or TCR-stimulated CB Treg cells added on day 9 of culture. 

When TCR-stimulated CB Treg cells were added to HSC cultures, ~1 500 pg/ml 

of TGF-β were detected at all time points assessed. Importantly, for HSC 

(controls) and co-cultures where resting CB Treg cells were added on day 9 of 

culture, lower levels of TGF-β secretion (~800 pg/ml) were detected at all time 

points as compared to the co-cultures with TCR-stimulated CB Treg cells 

(Figure 6.1). This suggests that TCR-stimulated CB Treg cells secrete higher 

levels of TGF-β. However, no statistical significance was observed between 

cultures, which may be explained by the high background secretion of TGF-β by 

HSC and NK cells (Chen et al., 2009).  
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Figure 6.1: TGF-β secretion levels in HSC cultures with or without Treg cells. Allogeneic 
resting CB Treg cells (red) or TCR-stimulated CB Treg cells (blue) were added on day 9 of HSC 
cultures. HSC cultured alone were used as controls (black) and NK cell media was used as 
negative control (white). Supernatants were collected every week for 35 days and analysed by 
ELISA. The results are means of duplicate wells and the values shown in the graphs represent 
medians. n=3-15. 

 

IL-10 secretion was also evaluated in the same cultures. Notably, when TCR-

stimulated CB Treg cells were added at day 9 of HSC cultures, a peak in IL-10 

secretion was clearly observed (Figure 6.2). In the co-cultures between HSC 

and TCR-stimulated CB Treg cells, ~80 pg/ml of IL-10 was detected at day 14 

of culture (p<0.0001) followed by a gradual reduction over time. It is noteworthy 

that IL-10 amounts observed in this study are biologically relevant, as similar 

levels have been observed in the bladder (20-40 pg/ml) of healthy individuals 

(Duell et al., 2012) and for PB Treg cells stimulated with PMA/ION (~100 pg/ml) 

(Duhen et al., 2012).  

 

When resting CB Treg cells were added to HSC cultures at day 9, IL-10 

production was also detected with a peak of secretion at day 21 (~90 pg/ml, 

p<0.0001) that gradually decreased over the remaining weeks (Figure 6.2). IL-

10 has only been reported to be secreted by TCR-stimulated and not resting 

Treg cells (Milward et al., 2013). Therefore, it is possible that the feeder layer 

cells used in this HSC culture system trigger IL-10 secretion by resting CB Treg 

cells. These results suggest that both TGF-β and IL-10 could be involved in the 

mechanism by which CB Treg cells inhibit NK cell differentiation. 
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Figure 6.2: IL-10 secretion levels in HSC cultures with or without Treg cells. Allogeneic 
resting CB Treg cells (red) or TCR-stimulated CB Treg cells (blue) were added at day 9 of HSC 
cultures. HSC cultured alone were used as controls (black). NK cell media was used as 
negative control (white). Supernatants were collected every week for 35 days and analysed by 
ELISA. Results are represented as means of duplicate wells. The values in the graphs 
represent medians. n=3-15. 

 

6.2.2  TGF-β and IL-10 gene expression by regulatory T cells 
added to haematopoietic stem cell cultures  

 

The results presented in the previous section suggest that TGF-β and/or IL-10 

may contribute to Treg cell mediated-inhibition of NK cell differentiation. If TGF-

β and/or IL-10 are involved in inhibition of NK cell differentiation by Treg cells, 

one could expect to observe increased mRNA expression of these molecules. 

To assess this, resting or TCR-stimulated CB Treg cells were added to HSC 

cultures at the time point at which the strongest effect was observed (D9), re-

isolated by cell sorting three days later (D12) and then RNA was extracted. 

TGF-β and IL-10 mRNA expression by Treg cells was then compared with 

resting or TCR-stimulated CB Treg cells before addition to HSC cultures.  

 

For IL-10, similar levels of mRNA expression were observed in resting and 

TCR-stimulated Treg cells before and after culture with HSC (Figure 6.3). 

These results suggest that IL-10 may not be the molecule responsible for the 

suppression of CB Treg cells, or that IL-10 had already being translated and 
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secreted before being analysed. For TGF-β, higher levels of mRNA expression 

were detected in TCR-stimulated CB Treg cells after co-culture with HSC 

(p=0.031) when compared to TCR-stimulated CB Treg cells before culture 

(Figure 6.3).  

 

 

Figure 6.3: TGF-β and IL-10 gene expression in Treg cells after three days culture with 
HSC. HSC were cultured in the presence of allogeneic resting CB Treg cells (red) or TCR-
stimulated CB Treg cells (white) at day 9 of HSC cultures and sorted at day 12. Freshly isolated 
CB Treg cells (black) or TCR-stimulated CB Treg cells for 24 h (blue) were used as controls. 
Total RNA was extracted from Treg cells, then TGF-β and IL-10 gene expression was assessed 
by real time PCR. The lines represent medians. n=3-4. 

  

6.3  TFG-β but not IL-10 recapitulates the effect of 
regulatory T cells on natural killer cell differentiation 

It was demonstrated that resting and TCR-stimulated CB Treg cells secreted 

TGF-β and IL-10 when co-cultured with HSC and that TCR-stimulated Treg 

cells co-cultured with HSC for three days expressed higher levels of TGF-β 

mRNA. Hence, to confirm whether TGF-β and/or IL-10 are involved in TCR-

stimulated CB Treg cell-mediated suppression of NK cell differentiation, 

blocking assays were performed using the TGF-β pathway inhibitor SB431542 

(Inman et al., 2002, Rorby et al., 2012) and/or human IL-10 receptor α blocking 

mAb (Godfrey et al., 2005). However, toxicity caused by the addition of these 
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Instead, it was assessed whether the effect of Treg cells on NK cell 

differentiation could be recapitulated by addition of recombinant human TGF-β 

and/ or IL-10 at different concentrations. Concentrations were chosen based on 

secretion levels observed in this study (~1 ng/ml TGF-β and ~0.1 ng/ml IL-10) 

and mentioned in the literature (Carson et al., 1995, Ghiringhelli et al., 2005, 

Rorby et al., 2012). Recombinant human TGF-β and/or IL-10 were added at day 

9 of differentiation and then added weekly until day 35 of differentiation.  

 

A reduction in the frequency of CD56+ cells was observed when TGF-β was 

added at a minimum concentration of 2.5 ng/ml. (Figure 6.4). NK cell frequency 

gradually decreased when higher concentrations of TGF-β were used whereas 

no effect was noted when recombinant human IL-10 was added to the cultures. 

Interestingly, when TGF-β and IL-10 were both added to HSC cultures, an 

effect on NK cell frequency was also observed; however the reduction was not 

as striking as when TGF-β only was added to HSC cultures.  

 

The expression of CD16 was also analysed, since it is important for NK cell 

maturation and cytotoxic functions (Cooper et al., 2001a). Notably, no reduction 

in expression of CD16 was observed in any of the conditions tested. These 

observations suggest that the addition of recombinant human TGF-β but not IL-

10 at day 9 of HSC cultures emulates the effect of TCR-stimulated CB Treg 

cells on NK cell differentiation. 
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Figure 6.4: Effects of recombinant human TGF-β and/or IL-10 on HSC cultures. 
Recombinant human TGF-β and/or IL-10 were added weekly at different concentrations on days 
9, 14, 21 and 28 of HSC cultures. Flow cytometric analysis of HSC was performed at day 35 of 
differentiation using CD56 and CD16 surface markers. Data is a representative example of 
seven independent experiments. 

 

It was studied whether the addition of recombinant human TGF-β and/or IL-10 

affected NK cell numbers and total cell numbers in this culture system. Total cell 

numbers were affected by the addition of recombinant human TGF-β at a 

minimum concentration of 2.5 ng/ml (64%; p=0.0006) (Figure 6.5A, B, red 

bars). Total cell numbers were further reduced when higher concentrations of 

TGF-β were used with reductions of 73% with 5.0 ng/ml TGF-β (p=0.0006) and 

92% with 10.0 ng/ml (p=0.0006) observed. IL-10–treated HSC cultures were not 

as affected (Figure 6.5A, B, blue bars). Furthermore, the combination of both 

suppressive molecules showed an effect with 20 to 60% reduction in total cell 

numbers (Figure 6.5B, white bars).  
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Figure 6.5: Total cell numbers and NK cell numbers in the presence of recombinant 
human TGF-β and/or IL-10. Recombinant human TGF-β and/or IL-10 were added weekly to 
HSC cultures at different concentrations. Total cell numbers (assessed using trypan blue) per 
well at day 35 of differentiation ± TGF-β and/or IL-10 at different concentrations (A). Summary 
plot and statistical analysis of panel A (B). Total NK cell numbers per well at day 35 of 
differentiation ± TGF-β and/or IL-10 at different concentrations (C). Summary plot and statistical 
analysis of panel C. NK cell numbers were calculated from the NK cell frequency determined by 
flow cytometry and total cell number per well (D). The lines represent medians. n=7. 

 

A decrease in NK cell numbers was observed at day 35 of HSC cultures when 

the highest concentrations of recombinant human TGF-β were added. 

Reduction in NK cell numbers of 66% with 2.5 ng/ml (p=0.0006), 77% with 5.0 

ng/ml (p=0.0006) and 96% with 10.0 ng/ml (p=0.0006) were observed (Figure 

6.5C, D, red bars). Addition of IL-10 only caused a 20% decrease in NK cell 

numbers and this effect was non-dose dependent (Figure 6.5C, D, blue bars). 

Finally, the addition of both TGF-β and IL-10 caused ~50% reduction in NK cell 

numbers (starting from 2.5 ng/ml) (Figure 6.5C, D, white bars). 

 

In order to ensure that this effect was not due to toxicity caused by the high 

concentrations of recombinant human TGF-β and/or IL-10 used, viability was 
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assessed in the cultures with the highest concentrations of these suppressive 

molecules. Flow cytometry analysis demonstrated no effect on viability for any 

of the treatments, with ~98% viable cells (7-AAD-) in the lymphocyte gate for all 

cultures (Figure 6.6). These data suggest that recombinant human TGF-β is 

able to recapitulate the observed effects of TCR-stimulated CB Treg cells on NK 

cell differentiation when added at day 9 of HSC culture.  

 

 

Figure 6.6: Viability of HSC cultures in the presence of recombinant human TGF-β and/or 
IL-10. Viability was measured in HSC cultures where the highest concentrations of recombinant 
human TGF-β (10 ng/ml) and/or IL-10 (50 ng/ml) were added weekly. CD45

+
 viability was 

assessed by flow cytometry using CD45 and 7-AAD. The lines represent medians. n=7. 

6.4 Regulatory T cell-mediated inhibition of natural cell 
differentiation is cell contact-dependent 

Several studies focusing on the effects of Treg cells on NK cells demonstrated 

the importance of cell-to-cell contact for Treg cell-mediated suppression 

(Ghiringhelli et al., 2005, Smyth et al., 2006, Zhou et al., 2010, Bergmann et al., 

2011). Hence, it is possible that CB Treg cells also require direct contact with 

HSC to inhibit their differentiation into NK cells. To evaluate this, HSC were 

cultured in the presence or absence of resting or TCR-stimulated CB Treg cells 

at key time points of HSC cultures, with Treg cells either being directly cultured 

together with HSC in the well or separated by a porous membrane of 0.4 µm 

(Transwell).  

 

The suppressive effect of TCR-stimulated CB Treg cells added at day 9 of HSC 
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Transwell (p=0.037), showing similar NK cell numbers as controls (HSC) at the 

end of the differentiation (Figure 6.7B). Furthermore, no difference was 

observed when resting CB Treg cells were cultured together or separated from 

HSC, regardless of the time point at which Treg cells were added to the cultures 

(Figure 6.7A). These results highlight the importance of cell-to-cell contact for 

TCR-stimulated CB Treg cells to suppress in this system and suggest that TGF-

β may be surface bound rather than secreted by TCR-stimulated CB Treg cells.  

 

 

Figure 6.7: Treg cell-mediated suppression of NK cell differentiation is cell contact-
dependent. HSC were cultured with allogeneic resting CB Treg cells (A) or TCR-stimulated CB 
Treg cells (B) added at key time points of NK cell differentiation. Treg cells were added directly 
to HSC cultures or were separated by a 0.4 µm porous membrane (Transwell) and analysed by 
flow cytometry at day 35 of culture. Cell numbers were calculated from the NK cell frequency 
determined by flow cytometry and total cell number per well. The lines represent medians. n=3-
13.  
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6.5 Natural killer cell differentiation can be “rescued” 
upon regulatory T cell depletion 

Smyth and colleagues demonstrated the suppressive capacity of Treg cells 

against NK cells using a mouse tumour model (Smyth et al., 2006). They 

showed that Treg cells require contact to suppress NK cells as depletion of Treg 

cells with anti-CD25 mAb could revert NK cell functions in vitro. Hence, in this 

study it was investigated whether NK cell differentiation could be “rescued” by 

depletion of CB Treg cells after being co-cultured for a short period of time with 

Treg cells. In order to evaluate this, resting or TCR-stimulated CB Treg cells 

were added at day 9 of HSC cultures and then depleted by cell sorting after a 

three day-co-culture. Sorted HSC were re-cultured on freshly irradiated feeder 

layer cells and cytokines were added. Total cell numbers of CD4+ T cells, 

CD56+ NK cells and intermediate stages of NK cell maturation were analysed in 

this study. 

 

It was observed that Treg cell depletion “rescued” NK cell differentiation (Figure 

6.8), with 89 to 97% of the cells being NK cells at day 35 of HSC cultures, with 

similar values to controls.  

 

 

Figure 6.8: Flow cytometric analysis of Treg cell depleted-HSC at day 35 of NK cell 
differentiation. Resting or TCR-stimulated CB Treg cells were added on day 9 of HSC cultures 
and depleted on day 12 (after three days co-culture). NK cell and Treg cell populations were 
analysed by flow cytometry using the surface markers CD56 and CD4, respectively. Data is a 
representative of 3 or 4 independent experiments. 

 

Total numbers of CD45+ cells, NK cells (CD56+) and Treg cells (CD4+) at day 35 

of HSC cultures are shown in Figure 6.9A-B. NK cell numbers from HSC 

cultures after Treg cell depletion were similar to controls, whereas reduced 
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numbers of NK cells were observed in co-cultures that contained TCR-

stimulated CB Treg cells (p=0.05) (Figure 6.9B). Moreover, fold expansion 

rates were restored upon Treg cell depletion, showing equivalent numbers at 

the end of the 35-day culture period (Figure 6.9C).  

 

!
Figure 6.9: HSC differentiation into NK cells can be rescued after Treg cell depletion. 
Allogeneic resting or TCR-stimulated CB Treg cells were added at day 9 of HSC cultures and 
depleted at day 12 (after three days co-culture). Treg cell depleted-HSC were re-cultured with 
freshly irradiated feeder layer cells and cytokines. Total cells/ well (black), total NK cells/well 
(red) and total Treg cells/well (blue) at day 35 of NK differentiation (A). Summary plot and 
statistical analysis of graph shown in panel A (B). Fold expansion of controls (HSC) and resting 
or TCR-stimulated Treg cell depleted-HSC (C). Cell numbers were calculated from the NK cell 
and T cell frequencies determined by flow cytometry and total cell number per well. The lines 
represent medians. n=4-18. 

!

Lastly, it was analysed whether NK cell maturation was completely restored on 

HSC cultures when Treg cells were depleted by assessing total cell numbers of 

three different intermediate stages of NK cell maturation that were defined as 
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CD56+CD94-CD16-, CD56+CD94+CD16- and CD56+CD94+CD16+ (see gating 

strategy in Section 5.4.2). Importantly, HSC cultures that were depleted of 

resting or TCR-stimulated CB Treg cells showed equivalent numbers of the 

three stages of NK cell maturation at the end of HSC cultures, as compared to 

HSC cultured alone (Figure 6.10A). Furthermore, MFI levels of CD94 and 

CD16 were not impaired in any of the conditions, but CD56 was slightly 

increased in both co-cultures (Figure 6.10B). These results suggest that HSC 

can be “rescued” after Treg cell depletion showing similar fold expansion rates, 

total cell numbers and NK cell maturation as controls. Moreover, these results 

highlight the fact that Treg cell persistence is required for TCR-stimulated CB 

Treg cell-mediated suppression of NK cell differentiation.  

!

!
Figure 6.10: Intermediate stages of NK cell maturation are intact in Treg cell-depleted 
HSC cultures. Allogeneic resting or TCR-stimulated CB Treg cells were added or not on day 9 
of HSC cultures and depleted on day 12 (after three days co-culture). Treg cell depleted-HSC 
were then re-cultured with freshly irradiated feeder layer cells and cytokines at a concentration 
of 50 000 cells/well. Frequency of expression of CD94 and CD16 on CD56

+
 NK cells (A). MFI of 

CD56, CD94 and CD16 surface markers on NK cells (B). Cell numbers were calculated from the 
NK cell frequency determined by flow cytometry and total cell number per well. The values 
represent the medians. n=3-4 

!

6.6 Regulatory T cell-mediated function is cytokine 
competition independent 

It has recently been proposed that Treg cells can regulate NK cell functions via 

IL-2 (Gasteiger et al., 2013a, Gasteiger et al., 2013b, Sitrin et al., 2013), as has 

been previously reported for Treg cell-mediated suppression of Tcon cells 
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(Pandiyan et al., 2007). Therefore, it is plausible that CB Treg cells may inhibit 

NK cell differentiation by cytokine competition due to TCR-stimulated CB Treg 

cells having a higher affinity for the cytokines used in the HSC cultures. As a 

consequence, CB Treg cells would have a higher proliferative rate than resting 

CB Treg cells. To address this, resting or TCR-stimulated CB Treg cells were 

cultured using HSC culture conditions in the absence of HSC. Both resting and 

TCR-stimulated CB Treg cells exhibited a 30-fold expansion at day 35 day of 

culture (Figure 6.11). It seems that CB Treg cells, whether resting or TCR-

stimulated, proliferate in the same way in response to the cytokines used in the 

in vitro system. Notably, it has been reported that IL-15, a crucial cytokine for 

NK cell differentiation, also induces Treg cell proliferation (Imamichi et al., 

2008). 

 

 

Figure 6.11: Resting and TCR-stimulated CB Treg cells show a similar proliferative profile 
under HSC culture conditions. Resting or TCR-stimulated CB Treg cells were cultured using 
HSC culture conditions in the absence of HSC. Cell numbers were calculated using trypan blue 
every week until day 35. The lines represent the medians. n=3 

 

Furthermore, flow cytometric analysis clearly demonstrated that CB Treg cells 

do not persist in HSC cultures. It was noted that throughout the cultures, the 

proportion of CD4+ cells gradually decreased under both conditions to reach 

only ~10-20% of the cultures by day 35 (Figure 6.12A and Figure 6.12B) 
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Figure 6.12: CD4 expression by Treg cells in HSC culture conditions. Resting or TCR-
stimulated CB Treg cells were cultured using HSC culture conditions in the absence of HSC. 
Flow cytometric analysis of CD4 expression at days 0, 7, 14, 21, 28 and 35 (A). Data is a 
representative sample of 3 independent experiments per group. Proportion of CD4 and non-
CD4 cells in resting CB Treg cell cultures (B). Proportion of CD4 and non-CD4 cells in TCR-
stimulated Treg cell cultures (C). n=3. The values represent medians. 

  

In fact, it was found that the non-CD4+ cells in these cultures, were CD56+. 

While CD4+ T cell numbers were decreasing, CD56+ NK cell numbers 

increased, reaching 80-90% frequency of the total cultures (Figure 6.13). As 

only Treg cells were cultured in these experiments, one explanation for this 

could be the possible presence of HSC as contaminants in the Treg cell 

isolations that could differentiate into NK cells in the presence of these 

cytokines, but this requires further investigation. Collectively, these results 
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confirm that CB Treg cell-mediated suppression of NK cell differentiation is not 

due to cytokine competition. 

Figure 6.13: Analysis of total cell numbers in the final weeks of Treg culture using HSC 
culture conditions. Resting (A) or TCR-stimulated CB Treg cells (B) were cultured under HSC 
culture conditions in the absence of HSC. Flow cytometric analysis of CD4 and CD56 
expression was performed at days 21, 28 and 35. Cell numbers were calculated from the T cell, 
NK cell and CD4

-
CD56

-
 frequencies determined by flow cytometry and total cell number per 

well. n=3 

!

6.7 Discussion 

In order to fully understand how Treg cell function can be manipulated for cell 

therapy, a thorough understanding of the mechanism(s) by which Treg cells 

suppress effector cells is required. To date, there is evidence that TGF-β 

mediates Treg cell suppression of NK cell function (Ghiringhelli et al., 2005, 

Smyth et al., 2006), however, the mechanism(s) by which Treg cells suppress 

NK cell differentiation were not known.  

 

In this chapter the mechanisms by which CB Treg cells suppress NK cell 

differentiation were elucidated. First, high levels of TGF-β and IL-10 were 

detected in supernatants from co-cultures between HSC and TCR-stimulated 

CB Treg cells. However, delayed secretion of IL-10 by resting CB Treg cells 

was also observed. IL-10 production is reported to be exclusively detected upon 

strong TCR-stimulation (Milward et al., 2013). One possibility could be that the 

EL08.1D2 stromal feeder layer cells can stimulate Treg cells leading to IL-10 

production; however, this requires further investigation. 
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In addition, it was demonstrated that TGF-β, but not IL-10, could recapitulate 

the effects of TCR-stimulated Treg cells on NK cell differentiation leading to a 

reduction in NK cell numbers (90%) in HSC cultures. This effect was observed 

with a minimum concentration of 2.5 ng/ml of TGF-β, which correlates with 

levels detected in the co-cultures (~2 ng/ml). A similar effect has also been 

observed in mice by Marcoe and colleagues who demonstrated that soluble 

TGF-β can also abrogate NK cell differentiation (95-98%) (Marcoe et al., 2012). 

Some authors have also suggested a dual effect of TGF-β on HSC with 

suppressive effects at high concentrations and stimulatory effects at low 

concentrations (Kale, 2004, Kale and Vaidya, 2004); yet this effect was not 

observed in this system.  

 

Treg cells have previously been shown to suppress NK cell functions in a cell 

contact dependent manner (Ghiringhelli et al., 2005) and that depletion of Treg 

cells led NK cells to recover effector functions (Smyth et al., 2006). Similarly, 

here it was shown that cell contact between TCR-stimulated CB Treg cells and 

HSC was required for Treg cell-mediated inhibition of NK cell differentiation, 

since physical separation (using Transwells) of Treg cells from HSC or Treg cell 

depletion reverted this effect. 

 

Treg cells can also suppress target cells by deprivation of available IL-2, thus 

causing reduced effector functions and control of NK cell activation (Gasteiger 

et al., 2013b, Sitrin et al., 2013). Since this study demonstrated that TCR-

stimulated but not resting CB Treg cells inhibit NK cell differentiation, it was 

hypothesised that TCR-stimulated CB Treg cells would have more affinity for 

cytokines than resting CB Treg cells and as a consequence will have a higher 

proliferative rate, regardless of the presence of HSC. To assess this, CB Treg 

cells were cultured alone using HSC culture conditions. It was found that resting 

and TCR-stimulated CB Treg cell did not persist in these cultures with only 10% 

of the cells being CD4+ T cells after 35 days in culture. Most of the cells were 

CD56+, which could be explained by a small HSC population contaminating the 

isolated Treg cells. Only 500 HSC (~0.01% from total cells) are required to 
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achieve the expansion observed in this in vitro model, but whether this accounts 

for the expansion of CD56+ cells observed still requires further assessment. 

 

These results give a more thorough understanding of how CB Treg cells 

suppress NK cell differentiation, which will allow designing better Treg cell 

therapies.  
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7 Discussion 

7.1 Scope of the study 

Since the first HSCT performed in 1959, major progresses have been made in 

the selection of donors, conditioning regimens and HSC sources used. 

However, GvHD is still one of the major post-HSCT challenges, causing high 

morbidity and mortality rates. In view of their regulatory function, several groups 

have proposed Treg cells as an adoptive therapy to modulate or prevent GvHD 

(Trzonkowski et al., 2009, Brunstein et al., 2011b, Di Ianni et al., 2011, Edinger 

and Hoffmann, 2011). Preclinical and clinical studies have now demonstrated 

the safety of this therapy in transplanted patients but the potential impact of 

Treg cells on GvL and GvI is still controversial, requiring further investigation 

(Trenado, 2003, Maury et al., 2010, Brunstein et al., 2013). In view of the 

capacity of Treg cells to suppress NK cells, which are key effectors of the GvL 

effect (Ruggeri et al., 2002) and crucial for anti-viral responses (Quinnan et al., 

1982), the effects of Treg cells on NK cell function and differentiation were 

studied. CB was selected as a model to analyse these potential effects as NK 

cell reconstitution occurs very early after transplant (Komanduri et al., 2007) 

and as NK cells constitute most of the lymphocytes in the circulation after CBT 

and are capable of killing leukaemia cells ex-vivo (Beziat et al., 2009), it is likely 

that NK cells mediate the GvL effect observed in the first months after CBT. 

Therefore, the use of CB Treg cells for adoptive therapy to prevent GvHD in 

CBT should be carefully reviewed, as there is potential for them to severely 

compromise NK cell functions. 
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7.2 Umbilical cord blood regulatory T cells exert 
suppressive capacity and can potentially interact 
with natural killer cells in diverse tissues 

In order to study the effects of CB Treg cells on NK cell effector functions and 

differentiation, a thorough understanding of the phenotype and function of CB 

Treg cells was necessary. Notably, it was important to address whether CB 

Treg cells could migrate to potential sites where the interaction between Treg 

cells and NK cells may take place. In Chapter 3, it was demonstrated that CB 

Treg cells exhibit a naive phenotype and are capable of suppressing Tcon cells 

in the presence of adult APCs and polyclonal stimulation. In addition, a 

minimum cell ratio for CB Treg cell suppression of 1:4 (Treg cells to Tcon cells) 

was determined, and this was used for the suppression assays with NK cells. 

Consistent with published data, it was observed that CB Treg cells can secrete 

high levels of TGF-β, regardless of their TCR-stimulation state, and produce IL-

10 upon TCR-stimulation (Milward et al., 2013). Finally, the homing properties 

of CB Treg cells were analysed and it was demonstrated that these cells exhibit 

high expression of surface markers associated with migration to the BM, LN and 

gut, but have low expression of surface markers associated with migration to 

inflammatory sites. These results were then compared with those published for 

the homing repertoire of CB NK cells (Luevano et al., 2012a) and it was found 

that both Treg cells and NK cells express markers associated with migration to 

the BM, LN (under certain conditions) and inflammatory sites, suggesting that 

this interaction may take place in the aforementioned tissues.  

7.3 TCR-stimulated umbilical cord blood regulatory T 
cells can supress umbilical cord blood natural killer 
cells in the absence of IL-2 

It has been reported in humans and mice that Treg cells can regulate NK cell 

functions in the absence of cytokines, whereas NK cells would bypass this 

suppression and exert their effector functions upon the presence of exogenous 

cytokines such as IL-2, IL-4 or IL-7 (Ghiringhelli et al., 2005, Gasteiger et al., 
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2013a, Gasteiger et al., 2013b). In Chapter 4 the effects of CB Treg cells on CB 

NK cell effector functions were studied under different conditions. In contrast to 

PB Treg cells, freshly isolated allogeneic resting CB Treg cells did not suppress 

cytotoxicity of resting PB NK cells in the absence of cytokines, which may 

suggest an immature state of Treg cells and the requirement of IL-2 stimulation 

for CB Treg cells to be functional (Godfrey et al., 2005). Conversely, a decrease 

in expression of the NK cell activating receptors NKG2D, CD16, NKp46 and 

DNAM-1 was observed on resting CB NK cells when co-cultured with resting 

CB Treg cells (allogeneic and autologous), but this effect was transient as 

statistical significance decreased over the period studied.  

 

When IL-2 was added to the cultures neither resting nor TCR-stimulated CB 

Treg cells abrogated CB NK cell functions. As mentioned previously, this could 

be due to the presence of IL-2 conferring NK cells with the ability to override 

Treg cell-mediated suppression (Ghiringhelli et al., 2005) and/or the need for 

CB NK cell maturation for suppression by Treg cells, since CB NK cells also 

exhibit an immature phenotype (Luevano et al., 2012a). Therefore, activated NK 

cells were co-cultured with resting or TCR-stimulated Treg cells in the absence 

of cytokines. Interestingly, TCR-stimulated CB Treg cells could suppress 

cytotoxicity of activated NK cells in the absence of exogenous IL-2, whereas 

resting CB Treg cells did not exert any suppression. These findings are in 

agreement with published data, which highlight the suppressive capacity of 

Treg cells on NK cells in the absence of cytokines (Ghiringhelli et al., 2005). 

Another possibility is that mature NK cells are more susceptible to Treg cell-

mediated suppression, which is in agreement with the results from Sungur and 

colleagues (Sungur et al., 2013), who observed a preferential expansion of 

licensed NK cells over unlicensed NK cells during infection with mouse CMV 

when Treg cells were depleted. Based on the assumption that the degree of 

licensing correlates with NK cell maturation, it may be possible that Treg cells 

could also selectively suppress specific NK cell populations. Hence, it would be 

interesting to analyse the effect of TCR-stimulated CB Treg cells on functions 

(i.e. cytotoxicity and cytokine secretion) of sorted CB CD56bright and CD56dim NK 

cells.  
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Treg cells had no effect on NK cell viability in any of the conditions tested. 

These observations differ to what has been shown by Grossman and 

colleagues, who showed lysis of autologous cells by human PB Treg cells via 

granzyme A (Grossman et al., 2004a). This suggests that CB Treg cells may 

exhibit a different pattern of expression of granzyme A as compared to PB Treg 

cells. Importantly, allogeneic and autologous Treg cells had similar effects on 

CB NK cell functions. Unfortunately, the mechanism of suppression by which 

TCR-stimulated Treg cells suppress NK cells could not be elucidated due to 

high variability within the samples.  

 

Another key finding presented in Chapter 4 was the ability of CB activated NK 

cells to lyse CB Treg cells in the presence of IL-2 after 72 h co-culture. This is 

consistent with several reports that demonstrate the ability of NK cells to control 

adaptive responses during infection in humans and mice (Brillard et al., 2007, 

Roy et al., 2008, Chin et al., 2010). Therefore, the expression of Fas (CD95) on 

CB Treg cells was evaluated. Fas expression was higher in TCR-stimulated CB 

Treg cells than in resting CB Treg cells, suggesting Fas as a potential receptor 

that promotes Treg cell lysis by activated CB NK cells. Further studies, including 

blocking of Fas on CB Treg cells in the presence of activated CB NK cells, 

would need to be performed to fully elucidate the mechanism by which NK cells 

lyse TCR-stimulated CB Treg cells.  

 

These findings are in agreement with those of Gasteiger and colleagues, who 

suggested that Treg cells are unable to suppress NK cells in the presence of IL-

2 (Gasteiger et al., 2013a, Gasteiger et al., 2013b). However, further 

experiments using activated CB NK cells and CB TCR-stimulated Treg cells in 

the presence of different cytokines would need to be performed in order to 

provide strong evidence that this concept applies to the in vitro system used in 

the present study. Experiments using activated NK cells co-cultured with resting 

or TCR-stimulated CB Treg cells with the addition of APCs and CD4+ Tcon cells 

would provide more insight into this process of regulation. Also, the analysis of 

granzyme B expression could demonstrate why CB Treg cells are not able to 

lyse CB NK cells as compared to PB Treg cells. Furthermore, since a decrease 

in expression of activating receptors on NK cells was observed when resting CB 
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Treg cells were co-cultured with CB NK cells, it would be interesting to further 

analyse the expression of membrane-bound TGF-β in resting CB Treg cells, as 

this molecule has been reported to decrease NK cell effector functions in the 

absence of TCR-stimulation for PB Treg cells (Ghiringhelli et al., 2005). 

Additionally, one could perform TGF-β blocking assays to further elucidate 

whether CB Treg cells use this mechanism to decrease expression of the NK 

cell activating receptors NKG2D, CD16, NKp46 and DNAM-1. As for the ability 

of CB activated NK cells to lyse CB Treg cells, further studies are necessary to 

assess how NK cells cause Treg cell lysis, to determine whether Fas is the 

main cognate receptor that promotes Treg cell lysis, and whether other 

molecules such as perforin and granzyme also play a role in Treg cell lysis by 

NK cells.  

 

Moreover, it will be key to validate these results in vivo. One strategy could be 

to evaluate the impact of CB Treg cells on GvT in a humanised Rag-/-γ-/- model 

of multiple myeloma, recently optimised by Guichelaar and colleagues 

(Guichelaar et al., 2013). In this model, the authors co-infused multiple 

myeloma cells with PBMCs with or without autologous PB iTreg cells. Using this 

model they showed that iTreg cells suppressed GvT depending on the location 

of the tumour. Hence, instead of PBMCs it would be interesting to infuse 

CBMCs or NK cells with or without TCR-stimulated CB Treg cells, to evaluate if 

CB Treg cells exert the same effect in vivo. The advantage of this model is that 

since multiple myeloma cells reside within the BM, it is suitable for studying the 

interaction between CB NK cells and CB Treg cells.  

7.4 TCR-stimulated umbilical cord blood regulatory T 
cells can suppress natural killer cell differentiation 
via TGF-β 

In Chapter 5, the effects of resting or TCR-stimulated CB Treg cells on NK cell 

differentiation were evaluated using an in vitro model of NK cell differentiation 

(Grzywacz et al., 2006, Luevano, 2013). There was approximately 90% 

reduction in NK cell count when TCR-stimulated CB Treg cells were added at 
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the time point when HSC commit to the NK cell lineage, whereas no effect was 

observed when resting Treg cells were added at the same time point. NK cells 

that developed in those cultures had a normal phenotype and exhibited normal 

IFN-γ production and cytotoxicity, except for the expression of CD16, which was 

slightly reduced. Importantly, high levels of IL-10 and TGF-β were observed in 

those HSC cultures in which TCR-stimulated CB Treg cells were added.  

 

As it was shown that TCR-stimulated CB Treg cells inhibit NK cell differentiation 

when HSC commit to the NK cell lineage, Chapter 6 focused on elucidating the 

mechanisms by which CB Treg cells mediate this effect. Since no APCs were 

present in this system, TGF-β and IL-10 were selected as candidates of 

inhibition of NK cell differentiation. First, blocking assays were performed with 

the addition of the TGF-β inhibitor SB 431542, a human IL-10Rα blocking 

antibody, or the combination of both. However, toxicity caused by the addition 

of the IL-10Rα blocking antibody and the lack of inhibition of the TGF-β pathway 

in this system did not allow this approach to be pursued further. For this reason, 

the observed TCR-stimulated Treg cell-effect was recapitulated by the addition 

of soluble TGF-β, IL-10 or the combination of both to HSC cultures. Addition of 

TGF-β to HSC cultures induced a similar reduction in NK cell counts as when 

TCR-stimulated Treg cells were added to HSC cultures at day 9, whereas no 

effect was observed in the presence of soluble IL-10. To further confirm TGF-β 

as the main mechanism of suppression in this system, the phosphorylation of 

Smad2/3 in HSC was investigated after addition of Treg cells, as Smad2/3 are 

involved in the TGF-β signalling pathway. However, phosphorylation was not 

observed within this timeframe. This can be explained by the technical difficulty 

in obtaining both positive and cellular signals at the same time since 

phosphorylation is transient (30-60 min after stimulation) (Wang et al., 2009). 

Phosphorylation in HSC was observed 30 min after the addition of soluble TGF-

β whereas no effect was observed with the addition of CB Treg cells to HSC 

cultures at day 9. This timeframe was selected assuming that CB Treg cells 

may take a few minutes to form the immune synapse with HSC; however, it is 

possible that this process may take longer. It was also demonstrated that the 

TCR-stimulated Treg-cell mediated effect observed in NK cell differentiation is 

cell contact dependent and cytokine competition independent. To date, the 
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effects of Treg cells on NK cell differentiation has not being studied, but there is 

strong evidence that TGF-β is involved in abrogating NK cell differentiation 

(Marcoe et al., 2012). Hence, this work suggests that Treg cells may impact on 

NK cell differentiation via TGF-β.  

 

In summary, the conditions and the mechanism of suppression by which CB 

Treg cells can impair NK cell differentiation was demonstrated. It would be 

interesting to include APCs (indirect pathway of suppression by Treg cells) 

and/or CD4+ Tcon cells in this system, as it has been observed that the latter 

can enhance NK cell maturation (Freud et al., 2006). Also, because of the use 

of other cell sources for HSCT, it would be interesting to perform this study with 

mobilised PB HSC. Moreover, the analysis of various transcription factors 

involved in NK cell differentiation was presented but it would be valuable to 

extend this study by microarray analysis. This technique would allow the 

screening of up to 30 000 genes at a time, thus providing a thorough 

understanding of the molecular mechanisms by which Treg cells suppress NK 

cell differentiation. Another interesting observation in this chapter was that at 

the time point where the strongest effect was observed, total cell numbers in the 

cultures were maintained constant until the end of the experiment, suggesting 

that potentially cell proliferation is blocked in this system. Therefore, it would be 

interesting to analyse whether the cell cycle of HSC is affected in the presence 

of Treg cells.  

 

Finally, to validate these results, the translation to an animal model would be 

necessary. An animal model has been set up in collaboration with Dr Michael 

Blundell and Prof Adrian Thrasher at the Institute of Child Health in London, UK. 

The use of Rag-/-γ-/- mice, which are characterised by the lack of T cells, B cells 

and NK cells, were selected to test the effect of Treg cells on NK cell 

differentiation based on an established humanised model of NK cell 

differentiation (Huntington et al., 2008). After irradiation, HSC were added at 1:1 

ratio with resting or TCR-stimulated Treg cells and followed for 10 weeks. 

However, Treg cell persistence was not observed at the end of this experiment. 

Hence, further optimisation is required to obtain Treg cell persistence to enable 

assessment of the effects of Treg cells on NK cell differentiation in vivo.  
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7.5 Translation to the clinic 

Formerly, studies in mice have reported the potential impact of transferred Treg 

cells on immune reconstitution. Nguyen and colleagues showed in a mouse 

model of GvHD using mismatched HSC and adoptive transfer of donor Tcon 

cells and donor Treg cells (1:1 ratio) at day 0, enhanced immune cell 

reconstitution including NK cell reconstitution and improved viral clearance in 

comparison to mice injected with Tcon cells and not Treg cells (Nguyen et al., 

2008). However, whether adoptive Treg cells can compromise NK cell 

mediated-GvL is still debatable. While the killing capacity of A20 leukaemia 

cells (GvL effect) was observed in BM-transplanted Balb/c mice in the presence 

of recipient-alloantigen-specific Treg cells, Treg cells compromised the GvL 

effect when a different mouse strain and a different tumour cell line was used 

(Trenado, 2003). This discrepancy can be explained by the different 

characteristics of the tumour cell lines used (i.e. tumour localisation). Guichelaar 

and colleagues analysed tumours residing in different tissues in a humanised 

Rag-/-γ-/- model whereby the potential of GvT suppression by Treg cells could be 

assessed (Guichelaar et al., 2013). PBMCs were used to induce T cell-

mediated GvT and iTreg cells, infused or not, were used to determine if they 

have an impact of GvT. As expected, mice with PBMCs alone effectively 

induced GvT responses reducing tumour size. However, co-infusion of Treg 

cells inhibited GvT against tumours located outside the BM, but not those inside 

the BM. Notably, the authors identified that the secretion of IL-1β and IL-6 by 

BM stromal cells, neutralised the suppressive capacity of Treg cells by inducing 

differentiation into Th17 cells, suggesting for the first time in a humanised model 

that Treg cells can suppress T-cell mediated GvT only outside the BM, whereas 

a protective environment was maintained inside the BM.  

 

In humans, the impact of CB Treg cells on GvL and viral clearance has not 

been fully addressed. Currently, we know that higher susceptibility to viral 

reactivation was observed in CB Treg cell-treated patients compared to 

historical controls (Brunstein et al., 2013). Also, the adoptive transfer of donor 

Treg cells to control GvHD caused by high doses of infused Tcon cell did not 
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impair NK cell reconstitution/maturation in haploidentical transplanted-patients 

(Di Ianni et al., 2011). This may suggest that under these particular conditions, 

Treg cells do not impair NK cell mediated GvL, possibly due to the elevated 

HSC numbers infused that may override a potential Treg cell-mediated effect. 

Hence, it would be interesting to study NK cell reconstitution in patients infused 

with normal HSC doses. Notably, a Treg cell mediated effect has also been 

observed in other clinical settings. In AML patients adoptively transferred with 

NK cells, Miller and colleagues observed that if >5% of Treg cells are present 

when NK cells are infused, elevated expansion of Treg cells are observed, 

directly correlating with decreased NK cell expansions which suggests possible 

Treg cell-mediated suppression of NK cells (Miller et al., unpublished data). In 

summary, all these studies provide evidence that Treg cells impair GvT or GvL, 

and even viral clearance. However, the underlying processes of suppression by 

which these effects occur are still not understood. Knowing that NK cells play a 

role in GvL, it is possible that Treg cells will directly suppress NK cells in 

addition to having an impact on NK cell differentiation.  

 

This study demonstrated for the first time that TCR-stimulated CB Treg cells 

impair CB NK cell effector functions and NK cell differentiation in vitro. 

Particularly, it was shown that TCR-stimulated CB Treg cells suppress CB NK 

cells only in “steady state” conditions (i.e. absence of IL-2), as this effect is not 

observed in the presence of IL-2. In the context of HSCT, the occurrence of a 

cytokine storm in transplanted patients is characteristic of aGvHD (Cohen et al., 

2000). There are two main processes in aGvHD that are considered to induce a 

cytokine storm. First, the conditioning regimen induces tissue damages and 

leads to activation of host APCs. Secondly, activated host APCs can activate 

donor T cells leading to clonal expansion and subsequent activation of cellular 

and inflammatory effectors which collectively produce high levels of cytokines 

such as IL-2, TNF-α, IFN-γ, IL-1 and IL-6 (Antin and Ferrara, 1992, Ferrara, 

1993, Ferrara et al., 2009). Although reduced, GvHD still occurs in CB 

transplanted patients (Takahashi et al., 2004, MacMillan et al., 2009, Ponce et 

al., 2013). Hence, based on the assumptions that CB Treg cells can only exert 

suppression in homeostatic conditions and that CB NK cells would overcome 

this suppression in the presence of cytokines, it is then unlikely that CB Treg 
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cells would inhibit NK cell effector functions in transplanted patients with 

aGvHD.  

 

Another important finding in this study was that TCR-stimulated CB Treg cells 

inhibit NK cell differentiation, particularly when HSC commitment to the NK cell 

lineage occurs. Notably, this inhibition was found regardless of the presence of 

cytokines, thus suggesting a potential clinical impact of a Treg cell therapy. As 

previously mentioned, CBT is characterised by early recovery of NK cells but a 

prolonged T cell reconstitution. Beziat and colleagues evaluated immune 

reconstitution in a cohort of 25 CB transplanted patients under RIC regimen and 

found that in the first 30 days post-transplantation, no T cells or B cells were 

detected, whereas high numbers of NK cells were observed. Importantly, these 

NK cells exhibited phenotypic features associated with maturity, which made 

them capable of killing leukemic blasts in vitro (Beziat et al., 2009), thus 

suggesting that at early stages after transplantation, NK cells may be effectors 

of GvL and viral clearance. In this study, it was demonstrated for the first time 

that CB Treg cells impair NK cell differentiation in vitro, with the strongest effect 

observed when HSC commit to NK cell lineage. If these results are confirmed in 

vivo, then it would be necessary to reassess the time frame of infusion of Treg 

cells in patients as it could severely impair NK cell-mediated GvL and viral 

clearance in the early stages (<30 days) after HSCT, thereby increasing the risk 

of relapse and infections. It is not known when HSC commit to NK cells in vivo, 

but it is likely that this process would occur within the first two weeks post-

transplantation. Hence, it is proposed that if a Treg cell therapy is utilised to 

prevent or modulate GvHD, it would be prudent to consider infusing these cells 

before or after HSC commitment to NK cell lineage has occurred, thus avoiding 

a potential inhibition of NK cell differentiation by Treg cells.  

 

In conclusion, this study identified the conditions by which CB Treg cells inhibit 

NK cell effector functions and NK cell differentiation, thus providing valuable 

information for the future design of Treg cell-based therapies for modulation or 

prevention of GvHD in HSCT.  
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